We revisit the (block-angular) min-max resource sharing problem, which is a well-known generalization of fractional packing and the maximum concurrent flow problem. It consists of finding an $\ell_{\infty}$-minimal element in a Minkowski sum $\mathcal{X}= \sum_{C \in \mathcal{C}} X_C$ of non-empty closed convex sets $X_C \subseteq \mathbb{R}^{\mathcal{R}}_{\geq 0}$, where $\mathcal{C}$ and $\mathcal{R}$ are finite sets. We assume that an oracle for approximate linear minimization over $X_C$ is given. In this setting, the currently fastest known FPTAS is due to M\"uller, Radke, and Vygen. For $\delta \in (0,1]$, it computes a $\sigma(1+\delta)$-approximately optimal solution using $\mathcal{O}((|\mathcal{C}|+|\mathcal{R}|)\log |\mathcal{R}| (\delta^{-2} + \log \log |\mathcal{R}|))$ oracle calls, where $\sigma$ is the approximation ratio of the oracle. We describe an extension of their algorithm and improve on previous results in various ways. Our FPTAS, which, as previous approaches, is based on the multiplicative weight update method, computes close to optimal primal and dual solutions using $\mathcal{O}\left(\frac{|\mathcal{C}|+ |\mathcal{R}|}{\delta^2} \log |\mathcal{R}|\right)$ oracle calls. We prove that our running time is optimal under certain assumptions, implying that no warm-start analysis of the algorithm is possible. A major novelty of our analysis is the concept of local weak duality, which illustrates that the algorithm optimizes (close to) independent parts of the instance separately. Interestingly, this implies that the computed solution is not only approximately $\ell_{\infty}$-minimal, but among such solutions, also its second-highest entry is approximately minimal. We prove that this statement cannot be extended to the third-highest entry.


翻译:我们重新审视( 阻隔度 ) minmax 共享最小资源的问题, 这是一种众所周知的分数包装和最大同时流问题的常规化 。 它包含在 Minkowski 和 $\ mathcal{X\\\\\\ sum\C\C\在\ mathcal{ C\\ X_C$ 在非空闭合的 convex 中 设置 $X_ C\ substale{ macreal{ { macreal{ {RQQQQQQQ} 美元, 其中 $\ macret=l=xxlal- calxxxx。 在目前情况下, 已知的 FPTAS 最多是 M"uller, Radke, 和 Vygen。 $delta adelta acreal commation 中, 它的 Ormal_\\\\\\\\\\\\\\\\\\ cal read read laud laud ex the laud the ex the $ mex the liquest lax lax lizes the = = = = = = = = = = =xxxxxxxxxxxxxxxxxxxxxxxx=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员