We revisit the (block-angular) min-max resource sharing problem, which is a well-known generalization of fractional packing and the maximum concurrent flow problem. It consists of finding an $\ell_{\infty}$-minimal element in a Minkowski sum $\mathcal{X}= \sum_{C \in \mathcal{C}} X_C$ of non-empty closed convex sets $X_C \subseteq \mathbb{R}^{\mathcal{R}}_{\geq 0}$, where $\mathcal{C}$ and $\mathcal{R}$ are finite sets. We assume that an oracle for approximate linear minimization over $X_C$ is given. In this setting, the currently fastest known FPTAS is due to M\"uller, Radke, and Vygen. For $\delta \in (0,1]$, it computes a $\sigma(1+\delta)$-approximately optimal solution using $\mathcal{O}((|\mathcal{C}|+|\mathcal{R}|)\log |\mathcal{R}| (\delta^{-2} + \log \log |\mathcal{R}|))$ oracle calls, where $\sigma$ is the approximation ratio of the oracle. We describe an extension of their algorithm and improve on previous results in various ways. Our FPTAS, which, as previous approaches, is based on the multiplicative weight update method, computes close to optimal primal and dual solutions using $\mathcal{O}\left(\frac{|\mathcal{C}|+ |\mathcal{R}|}{\delta^2} \log |\mathcal{R}|\right)$ oracle calls. We prove that our running time is optimal under certain assumptions, implying that no warm-start analysis of the algorithm is possible. A major novelty of our analysis is the concept of local weak duality, which illustrates that the algorithm optimizes (close to) independent parts of the instance separately. Interestingly, this implies that the computed solution is not only approximately $\ell_{\infty}$-minimal, but among such solutions, also its second-highest entry is approximately minimal. We prove that this statement cannot be extended to the third-highest entry.


翻译:我们重新审视( 阻隔度 ) minmax 共享最小资源的问题, 这是一种众所周知的分数包装和最大同时流问题的常规化 。 它包含在 Minkowski 和 $\ mathcal{X\\\\\\ sum\C\C\在\ mathcal{ C\\ X_C$ 在非空闭合的 convex 中 设置 $X_ C\ substale{ macreal{ { macreal{ {RQQQQQQQ} 美元, 其中 $\ macret=l=xxlal- calxxxx。 在目前情况下, 已知的 FPTAS 最多是 M"uller, Radke, 和 Vygen。 $delta adelta acreal commation 中, 它的 Ormal_\\\\\\\\\\\\\\\\\\ cal read read laud laud ex the laud the ex the $ mex the liquest lax lax lizes the = = = = = = = = = = =xxxxxxxxxxxxxxxxxxxxxxxx=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
专知会员服务
158+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月23日
Arxiv
4+阅读 · 2021年7月1日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员