论文题目:面向社会计算的网络表示学习

作者:涂存超

导师:孙茂松, 刘知远

网址:http://nlp.csai.tsinghua.edu.cn/~tcc/#Thesis

论文摘要:在数据挖掘和社交网络分析中,对于网络节点的特征表示一直至关重要。随 着大规模社会网络的出现,传统的网络表示方法面临着计算效率以及可解释性的 问题。此外,这些社会网络往往蕴含着丰富的异构信息,这些特点使得已有的网 络表示方法不能很好的处理这些大规模社会网络。 网络表示学习(NetworkRepresentationLearning),也就是网络嵌入(Network Embedding),目的是为网络中的节点学习一个低维实值的向量表示。每个节点对 应的表示向量蕴含了该节点的网络结构信息以及其它异构信息,这些表示向量一 般被当作特征向量,来进行进一步的网络分析任务,例如节点分类、链接预测、社 区发现等。本文针对网络节点表示已有工作的不足,提出了在社会网络中学习节 点显式及隐式表示的思路,来学习高质量的网络节点特征向量和提高社交网络分 析任务的效果。为了学习网络节点显式的特征表示,我们进行了如下工作:(1)基 于词项的显式网络表示:针对网络节点分类任务,我们提出一种双层分类模型,融 合利用社交网络用户异构文本信息和网络结构信息,来进行职业预测任务。(2)基 于主题标签的显式网络表示:为了提高用户特征表示的可解释性问题,我们提出 利用显式的标签来表示用户节点,探究标签与社交网络用户社交行为之间的对应 关系,进行用户标签推荐任务。 虽然网络节点显式表示可解释性强,但它面临着计算效率的问题。基于表示 学习在图像、语音、文本等领域成功应用,我们提出了一系列基于深度学习的网 络表示学习的方法,来学习网络节点的隐式低维表示。这些工作包括:(1)基于最 大间隔的隐式网络表示:为了提高网络节点表示的区分性及其在节点分类上的效 果,提出基于最大间隔理论的有区分性的网络表示学习模型,同时训练网络表示 学习模型和最大间隔分类器,显著提升了网络节点分类的效果。(2)上下文相关 的隐式网络表示:针对链接预测任务,提出上下文相关的网络表示学习模型,根据 网络节点交互的邻居节点的不同,结合文本信息来学习节点动态的表示向量。由 于引入了互相注意力机制,该模型能够显著提高链接预测任务的效果。(3)面向 社会关系抽取的隐式网络表示:为了更好的对节点之间边上的语义信息进行建模, 提出基于平移思想的网络表示学习模型,考虑节点之间边上的标签信息,来进行 社会关系抽取任务。(4)社区优化的隐式网络表示:为了考虑社会网络中全局的 社区特征,我们利用网络中的社区与文本中的主题之间的类比关系,提出了社区 优化的网络表示学习模型,来同时学习节点表示和社区发现。

phd_slides.pdf
phd_thesis.pdf
2+
0+

相关内容

报告简介: 图形领域的机器学习是一项重要而普遍的任务,其应用范围从药物设计到社交网络中的友情推荐。该领域的主要挑战是找到一种表示或编码图形结构的方法,以便机器学习模型可以很方便地利用它。 报告中介绍了深度学习的技术,自动学习将图形结构编码为低维嵌入。以及表示学习的关键进展,包括图形卷积网络及其表示能力,探讨了它在Web级推荐系统、医疗保健、知识表示和推理方面的应用。

嘉宾介绍: 领域的大牛Jure Leskovec,是斯坦福大学计算机学院的副教授,也是图表示学习方法 node2vec 和 GraphSAGE 作者之一。研究重点是对大型社会和信息网络进行挖掘和建模,它们的演化,信息的传播以及对它们的影响。 Jure Leskovec主页

4+
0+

论坛嘉宾:沈华伟 中国科学院计算技术研究所 研究员

报告主题:图卷积神经网络及其应用

报告摘要:卷积神经网络在处理图像、语音、文本等具有较好空间结构的数据时展现出了很好的优势。然而,卷积神经网络不能直接应用于图(Graph)这类空间结构不规则的数据上。近年来,研究人员开始研究如何将卷积神经网络迁移到图数据上,涌现出ChevNet、MoNet、GraphSAGE、GCN、GAT等一系列方法,在基于图的半监督分类和图表示学习等任务中表现出很好的性能。报告首先梳理和回顾该方向的主要研究进展和发展趋势,进而介绍报告人近期在图卷积神经网络方面的一些研究工作(ICLR’19; IJCAI’19)。

嘉宾简介:沈华伟,博士,中国科学院计算技术研究所研究员,中国中文信息学会社会媒体处理专委会副主任。主要研究方向:社交网络分析、网络数据挖掘。先后获得过CCF优博、中科院优博、首届UCAS-Springer优博、中科院院长特别奖、入选首届中科院青年创新促进会、中科院计算所“学术百星”。2013年在美国东北大学进行学术访问。2015年被评为中国科学院优秀青年促进会会员。获得国家科技进步二等奖、北京市科学技术二等奖、中国电子学会科学技术一等奖、中国中文信息学会钱伟长中文信息处理科学技术一等奖。出版个人专/译著3部,在网络社区发现、信息传播预测、群体行为分析等方面取得了系列研究成果,发表论文100余篇。担任PNAS、IEEE TKDE、ACM TKDD等10余个学术期刊审稿人和KDD、WWW、SIGIR、AAAI、IJCAI、CIKM、WSDM等20余个国际学术会议的程序委员会委员。

2+
0+
Top