高维概率提供了对随机向量、随机矩阵、随机子空间和用于量化高维不确定性的对象的行为的洞察。借鉴了概率、分析和几何的思想,它适用于数学、统计学、理论计算机科学、信号处理、优化等领域。它是第一个将高维概率的理论、关键工具和现代应用集成起来的。集中不等式是其核心,它涵盖了Hoeffding和Chernoff等经典不等式和Bernstein等现代发展。然后介绍了基于随机过程的强大方法,包括Slepian的、Sudakov的和Dudley的不等式,以及基于VC维的泛链和界。整本书包含了大量的插图,包括经典和现代的协方差估计、聚类、网络、半定规划、编码、降维、矩阵补全、机器学习、压缩感知和稀疏回归等结果。

这是一本教科书在高维概率与数据科学的应用展望。它是为博士和高级硕士学生和数学,统计,电子工程,计算机科学,计算生物学和相关领域的初级研究人员,谁正在寻求扩大他们的理论方法在现代研究数据科学的知识。

成为VIP会员查看完整内容
0
37

相关内容

从Facebook、万维网和互联网这样的社交网络,到我们身体细胞中蛋白质之间复杂的相互作用,我们不断面临着理解网络结构和发展的挑战。随机图的理论为这一理解提供了一个框架,在这本书中,作者对理解和应用这一理论的基本工具给出了细致的介绍。第一部分包括足够的材料,包括练习,一个学期的课程在高等本科或初级研究生水平。然后,读者为第二部分和第三部分更高级的主题做好了充分的准备。最后一部分提供了一个快速介绍所需的背景材料。所有那些对离散数学、计算机科学或应用概率及其应用感兴趣的人都会发现这是一个理想的入门课程。

https://www.cambridge.org/core/books/introduction-to-random-graphs/0F67A19795B731B0C97EAB5BB5748CF2#fndtn-information

成为VIP会员查看完整内容
0
42

这本教科书强调了代数和几何之间的相互作用,以激发线性代数的研究。矩阵和线性变换被认为是同一枚硬币的两面,它们的联系激发了全书的探究。围绕着这个界面,作者提供了一个概念上的理解,数学是进一步的理论和应用的核心。继续学习线性代数的第二门课程,您将会对《高等线性代数与矩阵代数》这本书有更深的了解。

从向量、矩阵和线性变换的介绍开始,这本书的重点是构建这些工具所代表的几何直观。线性系统提供了迄今为止看到的思想的强大应用,并导致子空间、线性独立、基和秩的引入。然后研究集中在矩阵的代数性质,阐明了它们所代表的线性变换的几何性质。行列式、特征值和特征向量都可以从这种几何观点中获益。在整个过程中,“额外主题”部分以广泛的思想和应用扩大了核心内容,从线性规划,到幂迭代和线性递归关系。每个部分都有各种层次的练习,包括许多设计用来用电脑程序解决的练习。

这本书是从线性变换和矩阵本身都是有用的对象的角度写的,但它是两者之间的联系,真正打开线性代数的魔法。有时候,当我们想知道一些关于线性变换的东西时,最简单的方法就是找到一组基然后看对应的矩阵。相反,有许多有趣的矩阵和矩阵运算家族,它们似乎与线性变换无关,但却可以解释一些基无关对象的行为。

线性与矩阵代数导论是线性代数的理想入门证明课程。学生被假定已经完成了一到两门大学水平的数学课程,尽管微积分不是明确的要求。教师将会感激有足够的机会选择符合每个教室需求的主题,并通过WeBWorK提供在线作业集。

成为VIP会员查看完整内容
0
51

本书是信息论领域中一本简明易懂的教材。主要内容包括:熵、信源、信道容量、率失真、数据压缩与编码理论和复杂度理论等方面的介绍。

本书还对网络信息论和假设检验等进行了介绍,并且以赛马模型为出发点,将对证券市场研究纳入了信息论的框架,从新的视角给投资组合的研究带来了全新的投资理念和研究技巧。

本书适合作为电子工程、统计学以及电信方面的高年级本科生和研究生的信息论基础教程教材,也可供研究人员和专业人士参考。

本书是一本简明易懂的信息论教材。正如爱因斯坦所说:“凡事应该尽可能使其简单到不能再简单为止。''虽然我们没有深人考证过该引语的来源(据说最初是在幸运蛋卷中发现的),但我们自始至终都将这种观点贯穿到本书的写作中。信息论中的确有这样一些关键的思想和技巧,一旦掌握了它们、不仅使信息论的主题简明,而且在处理新问題时提供重要的直觉。本书来自使用了十多年的信息论讲义,原讲义是信息论课程的高年级本科生和一年级研究生两学期用的教材。本书打算作为通信理论.计算机科学和统计学专业学生学习信息论的教材。

信息论中有两个简明要点。第一,熵与互信息这样的特殊量是为了解答基本问题而产生的。例如,熵是随机变量的最小描述复杂度,互信息是度量在噪声背景下的通信速率。另外,我们在以后还会提到,互信息相当于已知边信息条件下财富双倍的增长。第二,回答信息理论问邀的答案具有自然的代数结构。例如,熵具有链式法则,因而,谪和互信息也是相关的。因此,数据压缩和通信中的问题得到广泛的解释。我们都有这样的感受,当研究某个问题时,往往历经大量的代数运算推理得到了结果,但此时没有真正了解问题的全莪,最终是通过反复观察结果,才对整个问题有完整、明确的认识。所以,对一个问题的全面理解,不是靠推理,而是靠对结果的观察。要更具体地说明这一点,物理学中的牛顿三大定律和薛定谔波动方程也许是最合适的例子。谁曾预见过薛定谔波动方程后来会有如此令人敬畏的哲学解释呢?

在本书中,我们常会在着眼于问题之前,先了解一下答案的性质。比如第2章中,我们定义熵、相对熵和互信息,研究它们之间的关系,再对这些关系作一点解释·由此揭示如何融会贯通地使用各式各样的方法解决实际问题。同理,我们顺便探讨热力学第二定律的含义。熵总是增加吗?答案既肯定也否定。这种结果会令专家感兴趣,但初学者或i午认为这是必然的而不会深人考虑。

在实际教学中.教师往往会加人一自己的见解。事实上,寻找无人知道的证明或者有所创新的结果是一件很愉快的事情。如果有人将新的思想和已经证明的内容在课堂上讲解给学生,那么不仅学生会积极反馈“对,对,对六而且会大大地提升教授该课程的乐崆我们正是这样从研究本教材的许多新想法中获得乐趣的。

本书加人的新素材实例包括信息论与博弈之间的关系,马尔可夫链背景下热力学第二定律的普遍性问题,信道容量定理的联合典型性证明,赫夫曼码的竞争最优性,以及关于最大熵谱密度估计的伯格(回定理的证明。科尔莫戈罗夫复杂度这一章也是本书的独到之处。面将费希尔信息,互信息、中心极限定理以及布伦一闵可夫斯基不等式与熵幂不等式联系在一起,也是我们引以为豪之处。令我们感到惊讶的是.关于行列式不等式的许多经典结论,当利用信息论不等式后会很容易得到证明。

自从香农的奠基性论文面世以来,尽管信息论已有了相当大的发展,但我们还是要努力强调它的连贯性。虽然香农创立信息论时受到通信理论中的问题启发,然而我们认为信息论是一门独立的学科,可应用于通信理论和统计学中。我们将信息论作为一个学科领域从通信理论、概率论和统计学的背景中独立出来因为明显不可能从这些学科中获得难以理解的信息概念。由于本书中绝大多数结论以定理和证明的形式给出,所以,我们期望通过对这些定理的巧妙证明能说明这些结论的完美性。一般来讲,我们在介绍问题之前先描述回题的解的性质,而这些很有的性质会使接下来的证明顺理成章。

使用不等式串、中间不加任何文字、最后直接加以解释,是我们在表述方式上的一项创新希望读者学习我们所给的证明过程达到一定数量时,在没有任何解释的情况下就能理解其中的大部分步,并自己给出所需的解释这些不等式串好比模拟到试题,读者可以通过它们确认自己是否已掌握证明那些重要定理的必备知识。这些证明过程的自然流程是如此引人注目,以至于导致我们轻视了写作技巧中的某条重要原则。由于没有多余的话,因而突出了思路的逻辑性与主題思想u我们希望当读者阅读完本书后,能够与我们共同分亨我们所推崇的,具有优美、简洁和自然风格的信息论。

本书广泛使用弱的典型序列的方法,此概念可以追溯到香农1948年的创造性工作,而它真正得到发展是在20世纪70年代初期。其中的主要思想就是所谓的渐近均分性(AEP),或许可以粗略地说成“几乎一切事情都是等可能的"

第2章阐述了熵、相对熵和互信息之同的基本代数关系。渐近均分性是第3章重中之重的内容,这也使我们将随机过程和数据压缩的熵率分别放在第4章和第5章中论述。第6章介绍博弈,研究了数据压缩的对偶性和财富的增长率。可作为对信息论进行理性思考基础的科尔莫戈罗夫复杂度,拥有着巨大的成果,放在第14章中论述。我们的目标是寻找一个通用的最矩描述,而不是平均意义下的次佳描述。的确存在这样的普遍性概念用来刻画一个对象的复杂度。该章也论述了神奇数0,揭示数学上的不少奥秘,是图灵机停止运转概率的推广。第7章论述信道容量定理。第8章叙述微分熵的必需知识,它们是将早期容量定理推广到连续噪声信道的基础。基本的高斯信道容量问题在第9章中论述。第il章阐述信息论和统计学之间的关系,20世纪年代初期库尔贝克首次对此进行了研究,此后相对被忽视。由于率失真理论比无噪声数据压缩理论需要更多的背景知识,因而将其放置在正文中比较靠后的第10章。

网络信息理论是个大的主题,安排在第巧章,主要研究的是噪声和干扰存在情形下的同时可达的信息流。有许多新的思想在网络信息理论中开始活跃起来,其主要新要素有干扰和反馈第16章讲述股票市场,这是第6章所讨论的博弈的推广,也再次表明了信息论和博弈之间的紧密联系。第17章讲述信息论中的不等式,我们借此一隅把散布于全书中的有趣不等式重新收拢在一个新的框架中,再加上一些关于随机抽取子集熵率的有趣新不等式。集合和的体积的布伦一闵可夫斯基不等式,独立随机变量之和的有效方差的熵幂不等式以及费希尔信息不等式之间的美妙关系也将在此章中得到详尽的阐述。

本书力求推理严密,因此对数学的要求相当高·要求读者至少学过一学期的概率论课程且有扎实的数学背景,大致为本科高年级或研究生一年级水平。尽管如此,我们还是努力避免使用测度论。因为了解它只对第16章中的遍历过程的AEP的证明过程起到简化作用。这符合我们的观点,那就是信息论基础与技巧不同,后者才需要将所有推广都写进去。

本书的主体是第2,3,4,5,7,8,9,10,11和巧章,它们自成体系,读懂了它们就可以对信息论有很好的理解。但在我们看来,第14章的科尔莫戈罗夫复杂度是深人理解信息论所需的必备知识。余下的几章,从博弈到不等式.目的是使主题更加连贯和完美。

成为VIP会员查看完整内容
0
114

这些笔记是我在2014年春季和2016年秋季在普林斯顿教的课程APC 550:高维概率。我的目的是尽可能地以一种连贯的方式介绍一组关于概率、分析和几何交叉的思想,这些思想产生于不同领域的广泛的当代问题。

高维的概率是什么?这个问题没有好的答案。高维概率问题出现在科学、工程和数学的许多领域。一个(非常不完整的)列表可能包括:

• 大型随机结构:随机矩阵,随机图,…

• 统计和机器学习:高维数据的估计、预测和模型选择。

• 计算机科学中的随机算法。

• 信息理论中的随机码。

• 统计物理学:吉布斯测量、渗透、旋转眼镜……

• 随机组合结构:最长增长子序列、生成树、旅行推销员问题……

• 巴拿赫空间的概率:巴拿赫值随机变量的概率极限定理,经验过程,巴拿赫空间的局部理论,几何泛函分析,凸几何

• 高维马尔可夫链中的混合时间等现象。

成为VIP会员查看完整内容
0
57

这本书是哈佛大学Joseph K.Blitzstein 教授和斯坦福大学Jessica Hwang博士合著的新书《Introduction to probability》第二版预印版已公开。本书提供了对概率的介绍,并为理解统计、随机性和不确定性奠定了基础。

这本书提供了概率论的现代介绍,并为理解统计、随机性和不确定性奠定了基础。从基本的投币和巧合的研究到谷歌PageRank和马尔可夫链蒙特卡罗,本文探讨了各种应用和实例。由于概率论通常被认为是一门反直觉的学科,因此给出了许多直观的解释、图表和实践问题。每一章的结尾都有一节展示如何在统计计算和模拟的自由软件环境R中探索该章的思想。

概率论(英语:Probability theory)是集中研究概率及随机现象的数学分支,是研究随机性或不确定性等现象的数学。概率论主要研究对象为随机事件、随机变量以及随机过程。对于随机事件是不可能准确预测其结果的,然而对于一系列的独立随机事件——例如掷骰子、扔硬币、抽扑克牌以及轮盘等,会呈现出一定的、可以被用于研究及预测的规律,两个用来描述这些规律的最具代表性的数学结论分别是大数定律和中心极限定理。

二、主要内容 下面是这本书的一些目录: 第一章:概率和统计 第二章:条件概率 第三章:随机变量及其分布 第四章:期望 第五章:连续随机变量 第六章:时刻 第七章:联合分布 第八章:转换 第九章:条件期望 第十章:不等式和极限定理 第十一章:马尔可夫链 第十二章:马尔可夫链蒙特卡罗 第十三章:泊松过程 第十四章:数学

成为VIP会员查看完整内容
0
60

这是我2004年,2006年和2009年在斯坦福大学教授的概率理论博士课程的讲义。本课程的目标是为斯坦福大学数学和统计学系的博士生做概率论研究做准备。更广泛地说,文本的目标是帮助读者掌握概率论的数学基础和在这一领域中证明定理最常用的技术。然后将此应用于随机过程的最基本类的严格研究。

为此,我们在第一章中介绍了测度与积分理论中的相关元素,即事件的概率空间与格-代数、作为可测函数的随机变量、它们的期望作为相应的勒贝格积分,以及独立性的重要概念。

利用这些元素,我们在第二章中研究了随机变量收敛的各种概念,并推导了大数的弱定律和强定律。

第三章讨论了弱收敛的理论、分布函数和特征函数的相关概念以及中心极限定理和泊松近似的两个重要特例。

基于第一章的框架,我们在第四章讨论了条件期望的定义、存在性和性质,以及相关的规则条件概率分布。

第五章讨论了过滤、信息在时间上的级数的数学概念以及相应的停止时间。关于后者的结果是作为一组称为鞅的随机过程研究的副产品得到的。讨论了鞅表示、极大不等式、收敛定理及其各种应用。为了更清晰和更容易的表述,我们在这里集中讨论离散时间的设置来推迟与第九章相对应的连续时间。

第六章简要介绍了马尔可夫链的理论,概率论的核心是一个庞大的主题,许多教科书都致力于此。我们通过研究一些有趣的特殊情况来说明这类过程的一些有趣的数学性质。

在第七章中,我们简要介绍遍历理论,将注意力限制在离散时间随机过程的应用上。我们定义了平稳过程和遍历过程的概念,推导了Birkhoff和Kingman的经典定理,并强调了该理论的许多有用应用中的少数几个。

第八章建立了以连续时间参数为指标的右连续随机过程的研究框架,引入了高斯过程族,并严格构造了布朗运动为连续样本路径和零均值平稳独立增量的高斯过程。

第九章将我们先前对鞅和强马尔可夫过程的处理扩展到连续时间的设定,强调了右连续滤波的作用。然后在布朗运动和马尔可夫跳跃过程的背景下说明了这类过程的数学结构。

在此基础上,在第十章中,我们利用不变性原理重新构造了布朗运动作为某些重新标定的随机游动的极限。进一步研究了其样本路径的丰富性质以及布朗运动在clt和迭代对数定律(简称lil)中的许多应用。

https://statweb.stanford.edu/~adembo/stat-310b/lnotes.pdf

成为VIP会员查看完整内容
0
76

概率论起源于17世纪的法国,当时两位伟大的法国数学家,布莱斯·帕斯卡和皮埃尔·德·费马,对两个来自机会博弈的问题进行了通信。帕斯卡和费马解决的问题继续影响着惠更斯、伯努利和DeMoivre等早期研究者建立数学概率论。今天,概率论是一个建立良好的数学分支,应用于从音乐到物理的学术活动的每一个领域,也应用于日常经验,从天气预报到预测新的医疗方法的风险。

本文是为数学、物理和社会科学、工程和计算机科学的二、三、四年级学生开设的概率论入门课程而设计的。它提出了一个彻底的处理概率的想法和技术为一个牢固的理解的主题必要。文本可以用于各种课程长度、水平和重点领域。

在标准的一学期课程中,离散概率和连续概率都包括在内,学生必须先修两个学期的微积分,包括多重积分的介绍。第11章包含了关于马尔可夫链的材料,为了涵盖这一章,一些矩阵理论的知识是必要的。

文本也可以用于离散概率课程。材料被组织在这样一种方式,离散和连续的概率讨论是在一个独立的,但平行的方式,呈现。这种组织驱散了对概率过于严格或正式的观点,并提供了一些强大的教学价值,因为离散的讨论有时可以激发更抽象的连续的概率讨论。在离散概率课程中,学生应该先修一学期的微积分。

为了充分利用文中的计算材料和例子,假设或必要的计算背景很少。所有在文本中使用的程序都是用TrueBASIC、Maple和Mathematica语言编写的。

成为VIP会员查看完整内容
0
67

Edwin Thompson Jaynes所著的Probability Theory: The Logic of Science,本书暂无中译本,影印本名为《概率论沉思录》也已绝版。这本书是作者的遗著,花费半个世纪的时间完成,从名字就可以看出是一部神书。作者从逻辑的角度探讨了基于频率的概率,贝叶斯概率和统计推断,将概率论这门偏经验的学科纳入数理逻辑的框架之下。如果读这本书,千万要做好烧脑的准备。

《概率论沉思录(英文版)》将概率和统计推断融合在一起,用新的观点生动地描述了概率论在物理学、数学、经济学、化学和生物学等领域中的广泛应用,尤其是它阐述了贝叶斯理论的丰富应用,弥补了其他概率和统计教材的不足。全书分为两大部分。第一部分包括10章内容,讲解抽样理论、假设检验、参数估计等概率论的原理及其初等应用;第二部分包括12章内容,讲解概率论的高级应用,如在物理测量、通信理论中的应用。《概率论沉思录(英文版)》还附有大量习题,内容全面,体例完整。

《概率论沉思录(英文版)》内容不局限于某一特定领域,适合涉及数据分析的各领域工作者阅读,也可作为高年级本科生和研究生相关课程的教材。

成为VIP会员查看完整内容
0
60

【导读】《机器学习:贝叶斯和优化的视角》是雅典大学信息学和通信系的教授Sergios Theodoridis的经典著作,对所有主要的机器学习方法和新研究趋势进行了深入探索,涵盖概率和确定性方法以及贝叶斯推断方法。非常值得学习。

Sergios Theodoridis教授是雅典大学信息学和通信系的教授,香港中文大学(深圳)客座教授。他的研究领域是信号处理和机器学习。他的研究兴趣是自适应算法,分布式和稀疏性感知学习,机器学习和模式识别,生物医学应用中的信号处理和学习以及音频处理和检索。

他的几本著作与合著蜚声海内外,包括《机器学习:贝叶斯和优化的视角》以及畅销书籍《模式识别》。他是2017年EURASIP Athanasios Papoulis奖和2014年EURASIP Meritorious Service奖的获得者。

http://cgi.di.uoa.gr/~stheodor/

机器学习:贝叶斯和优化方法

本书对所有主要的机器学习方法和新研究趋势进行了深入探索,涵盖概率和确定性方法以及贝叶斯推断方法。其中,经典方法包括平均/小二乘滤波、卡尔曼滤波、随机逼近和在线学习、贝叶斯分类、决策树、逻辑回归和提升方法等,新趋势包括稀疏、凸分析与优化、在线分布式算法、RKH空间学习、贝叶斯推断、图模型与隐马尔可夫模型、粒子滤波、深度学习、字典学习和潜变量建模等。全书构建了一套明晰的机器学习知识体系,各章内容相对独立,物理推理、数学建模和算法实现精准且细致,并辅以应用实例和习题。本书适合该领域的科研人员和工程师阅读,也适合学习模式识别、统计/自适应信号处理和深度学习等课程的学生参考。

成为VIP会员查看完整内容
0
218

高斯过程(GPs)为核机器的学习提供了一种有原则的、实用的、概率的方法。在过去的十年中,GPs在机器学习社区中得到了越来越多的关注,这本书提供了GPs在机器学习中理论和实践方面长期需要的系统和统一的处理。该书是全面和独立的,针对研究人员和学生在机器学习和应用统计学。

这本书处理监督学习问题的回归和分类,并包括详细的算法。提出了各种协方差(核)函数,并讨论了它们的性质。从贝叶斯和经典的角度讨论了模型选择。讨论了许多与其他著名技术的联系,包括支持向量机、神经网络、正则化网络、相关向量机等。讨论了包括学习曲线和PAC-Bayesian框架在内的理论问题,并讨论了几种用于大数据集学习的近似方法。这本书包含说明性的例子和练习,和代码和数据集在网上是可得到的。附录提供了数学背景和高斯马尔可夫过程的讨论。

成为VIP会员查看完整内容
0
119
小贴士
相关VIP内容
专知会员服务
51+阅读 · 5月24日
专知会员服务
114+阅读 · 3月22日
专知会员服务
76+阅读 · 2020年12月3日
专知会员服务
67+阅读 · 2020年11月25日
专知会员服务
60+阅读 · 2020年10月18日
专知会员服务
218+阅读 · 2020年6月8日
专知会员服务
119+阅读 · 2020年5月2日
相关论文
Gergely Neu,Gintare Karolina Dziugaite,Mahdi Haghifam,Daniel M. Roy
0+阅读 · 8月15日
Christian Antić
0+阅读 · 8月15日
Multi-Stage Graph Peeling Algorithm for Probabilistic Core Decomposition
Yang Guo,Xuekui Zhang,Fatemeh Esfahani,Venkatesh Srinivasan,Alex Thomo,Li Xing
0+阅读 · 8月13日
Eugene A. Golikov
5+阅读 · 2020年12月10日
Analysis Methods in Neural Language Processing: A Survey
Yonatan Belinkov,James Glass
4+阅读 · 2019年1月14日
dynnode2vec: Scalable Dynamic Network Embedding
Sedigheh Mahdavi,Shima Khoshraftar,Aijun An
9+阅读 · 2018年12月6日
Jack Baker,Paul Fearnhead,Emily B Fox,Christopher Nemeth
3+阅读 · 2018年6月19日
Shuai Zheng,Chris Ding,Feiping Nie
6+阅读 · 2018年4月13日
Devendra Singh Chaplot,Ruslan Salakhutdinov
5+阅读 · 2018年1月5日
Top