越来越多来自不同领域的计算机科学家使用离散数学结构来解释概念和问题。在教学经验的基础上,作者提供了一个容易理解的文本,强调了离散数学的基础及其高级课题。这篇文章展示了如何用清晰的数学语言表达精确的思想。学生发现离散数学在描述计算机科学结构和解决问题方面的重要性。他们还学习如何掌握离散数学将帮助他们发展重要的推理技能,这些技能将在他们的职业生涯中继续发挥作用。

成为VIP会员查看完整内容
0
34

相关内容

本书基于易于理解且具有数据科学相关的丰富的库的Python语言环境,从零开始讲解数据科学工作。具体内容包括:Python速成,可视化数据,线性代数,统计,概率,假设与推断,梯度下降法,如何获取数据,k近邻法,朴素贝叶斯算法,等等。作者借助大量具体例子以及数据挖掘、统计学、机器学习等领域的重要概念,详细展示了什么是数据科学。

介绍数据科学基本知识的重量级读本,Google数据科学家作品。

数据科学是一个蓬勃发展、前途无限的行业,有人将数据科学家称为“21世纪头号性感职业”。本书从零开始讲解数据科学工作,教授数据科学工作所必需的黑客技能,并带领读者熟悉数据科学的核心知识——数学和统计学。

作者选择了功能强大、简单易学的Python语言环境,亲手搭建工具和实现算法,并精心挑选了注释良好、简洁易读的实现范例。书中涵盖的所有代码和数据都可以在GitHub上下载。

  • 简单介绍Python
  • 回顾一下线性几何、统计和概率知识,了解搞数据科学的时候怎么使用它们
  • 收集、探索、清理、转换和操作数据
  • 了解机器学习的基本知识
  • 实现K近邻、朴素贝叶斯、线性及逻辑回归、决策树、神经网络及聚类等模型
  • 探索推荐系统、自然语言处理、网络分析、MapReduce,还有数据库
成为VIP会员查看完整内容
0
17

这是一本关于理论计算机科学的本科入门课程的教科书。这本书的教育目的是传达以下信息:

• 这种计算出现在各种自然和人为系统中,而不仅仅是现代的硅基计算机中。 • 类似地,除了作为一个极其重要的工具,计算也作为一个有用的镜头来描述自然,物理,数学,甚至社会概念。 • 许多不同计算模型的普遍性概念,以及代码和数据之间的二元性相关概念。 • 一个人可以精确地定义一个计算的数学模型,然后用它来证明(有时只是猜测)下界和不可能的结果。 • 现代理论计算机科学的一些令人惊讶的结果和发现,包括np完备性的流行、交互作用的力量、一方面的随机性的力量和另一方面的去随机化的可能性、在密码学中“为好的”使用硬度的能力,以及量子计算的迷人可能性。

成为VIP会员查看完整内容
0
20

Python中的数据科学和分析是为学术和商业环境中的数据科学和数据分析从业者设计的。其目的是通过使用Python开发的工具(如SciKit-learn、Pandas、Numpy等)向读者介绍数据科学中使用的主要概念。鉴于Python最近在数据科学社区的流行,它的使用特别有趣。有经验的程序员和新手都可以使用这本书。

本书的组织方式是各个章节相互独立,这样读者就可以放心地使用其中的内容作为参考。这本书从过程和获得的结果的角度讨论了什么是数据科学和分析。还介绍了Python的重要特性,包括Python入门。机器学习、模式识别和人工智能的基本元素在书的其余部分使用的算法和实现的基础上也出现在书的第一部分。

本书的第二部分介绍了使用Python、聚类技术和分类算法的回归分析。层次聚类、决策树和集成技术,以及降维技术和推荐系统也被探讨。书的最后一部分讨论了支持向量机算法和内核技巧。

成为VIP会员查看完整内容
0
19

如果您是用Python编程的新手,并且正在寻找可靠的介绍,那么这本书就是为您准备的。由计算机科学教师开发,在“为绝对初学者”系列丛书通过简单的游戏创造教授编程的原则。您将获得实际的Python编程应用程序所需的技能,并将了解如何在真实场景中使用这些技能。在整个章节中,你会发现一些代码示例来说明所提出的概念。在每一章的结尾,你会发现一个完整的游戏,展示了这一章的关键思想,一章的总结,以及一系列的挑战来测试你的新知识。当你读完这本书的时候,你将非常精通Python,并且能够将你所学到的基本编程原理应用到你要处理的下一种编程语言。

成为VIP会员查看完整内容
0
36

管理统计和数据科学的原理包括:数据可视化;描述性措施;概率;概率分布;数学期望;置信区间;和假设检验。方差分析;简单线性回归;多元线性回归也包括在内。另外,本书还提供了列联表、卡方检验、非参数方法和时间序列方法。

教材:

  • 包括通常在入门统计学课程中涵盖的学术材料,但与数据科学扭曲,较少强调理论
  • 依靠Minitab来展示如何用计算机执行任务
  • 展示并促进来自开放门户的数据的使用
  • 重点是发展对程序如何工作的直觉
  • 让读者了解大数据的潜力和目前使用它的失败之处
成为VIP会员查看完整内容
0
42

这本教科书通过提供实用的建议,使用直接的例子,并提供相关应用的引人入胜的讨论,以一种容易理解的方式介绍了基本的机器学习概念。主要的主题包括贝叶斯分类器,最近邻分类器,线性和多项式分类器,决策树,神经网络,和支持向量机。后面的章节展示了如何通过“推进”的方式结合这些简单的工具,如何在更复杂的领域中利用它们,以及如何处理各种高级的实际问题。有一章专门介绍流行的遗传算法。

这个修订的版本包含关于工业中机器学习的实用应用的关键主题的三个全新的章节。这些章节研究了多标签域,无监督学习和它在深度学习中的使用,以及归纳逻辑编程的逻辑方法。许多章节已经被扩展,并且材料的呈现已经被增强。这本书包含了许多新的练习,许多解决的例子,深入的实验,和独立工作的计算机作业。

https://link.springer.com/book/10.1007/978-3-319-63913-0#about

成为VIP会员查看完整内容
0
61

【导读】纽约大学开设的离散数学课程,这是一门运用于计算机科学的离散数学课程。这只是一门一学期的课程,所以有很多话题是它没有涉及到的,或者没有深入讨论。但我们希望这能给你一个技能的基础,你可以在你需要的时候建立,特别是给你一点数学的成熟——对数学是什么和数学定义和证明如何工作的基本理解。

成为VIP会员查看完整内容
0
54

数据科学库、框架、模块和工具包非常适合进行数据科学研究,但它们也是深入研究这一学科的好方法,不需要真正理解数据科学。在本书中,您将了解到许多最基本的数据科学工具和算法都是通过从头实现来实现的。

如果你有数学天赋和一些编程技能,作者Joel Grus将帮助你熟悉作为数据科学核心的数学和统计,以及作为数据科学家的入门技能。如今,这些杂乱的、充斥着海量数据的数据,为一些甚至没人想过要问的问题提供了答案。这本书为你提供了挖掘这些答案的诀窍。

参加Python速成班

  • 学习线性代数、统计和概率的基础知识,并了解如何以及何时在数据科学中使用它们
  • 收集、探索、清理、分析和操作数据
  • 深入了解机器学习的基本原理
  • 实现诸如k近邻、朴素贝叶斯、线性和逻辑回归、决策树、神经网络和聚类等模型
  • 探索推荐系统、自然语言处理、网络分析、MapReduce和数据库
成为VIP会员查看完整内容
0
50

通过机器学习的实际操作指南深入挖掘数据

机器学习: 为开发人员和技术专业人员提供实践指导和全编码的工作示例,用于开发人员和技术专业人员使用的最常见的机器学习技术。这本书包含了每一个ML变体的详细分析,解释了它是如何工作的,以及如何在特定的行业中使用它,允许读者在阅读过程中将所介绍的技术融入到他们自己的工作中。机器学习的一个核心内容是对数据准备的强烈关注,对各种类型的学习算法的全面探索说明了适当的工具如何能够帮助任何开发人员从现有数据中提取信息和见解。这本书包括一个完整的补充教师的材料,以方便在课堂上使用,使这一资源有用的学生和作为一个专业的参考。

机器学习的核心是一种基于数学和算法的技术,它是历史数据挖掘和现代大数据科学的基础。对大数据的科学分析需要机器学习的工作知识,它根据从训练数据中获得的已知属性形成预测。机器学习是一个容易理解的,全面的指导,为非数学家,提供明确的指导,让读者:

  • 学习机器学习的语言,包括Hadoop、Mahout和Weka
  • 了解决策树、贝叶斯网络和人工神经网络
  • 实现关联规则、实时和批量学习
  • 为安全、有效和高效的机器学习制定战略计划

通过学习构建一个可以从数据中学习的系统,读者可以在各个行业中增加他们的效用。机器学习是深度数据分析和可视化的核心,随着企业发现隐藏在现有数据中的金矿,这一领域的需求越来越大。对于涉及数据科学的技术专业人员,机器学习:为开发人员和技术专业人员提供深入挖掘所需的技能和技术。

成为VIP会员查看完整内容
0
65

本文采用了一种独特的机器学习方法,它包含了对进行研究、开发产品、修补和玩耍所必需的所有基本概念的全新的、直观的、但又严谨的描述。通过优先考虑几何直观,算法思维,和实际应用的学科,包括计算机视觉,自然语言处理,经济学,神经科学,推荐系统,物理,和生物学,这篇文章为读者提供了一个清晰的理解基础材料以及实际工具需要解决现实世界的问题。通过深入的Python和基于MATLAB/ octave的计算练习,以及对前沿数值优化技术的完整处理,这是学生的基本资源,也是从事机器学习、计算机科学、电子工程、信号处理和数值优化的研究人员和实践者的理想参考。其他资源包括补充讨论主题、代码演示和练习,可以在官方教材网站mlrefined.com上找到。

  • 建立在清晰的几何直觉上的讲述
  • 最先进的数值优化技术的独特处理
  • 逻辑回归和支持向量机的融合介绍
  • 将功能设计和学习作为主要主题
  • 通过函数逼近的视角,先进主题的无与伦比的呈现
  • 深度神经网络和核方法的细化描述
成为VIP会员查看完整内容
0
85
小贴士
相关主题
相关VIP内容
专知会员服务
17+阅读 · 9月20日
专知会员服务
20+阅读 · 9月17日
专知会员服务
19+阅读 · 8月22日
专知会员服务
36+阅读 · 8月14日
专知会员服务
42+阅读 · 7月29日
【干货书】《机器学习导论(第二版)》,348页pdf
专知会员服务
61+阅读 · 6月16日
专知会员服务
54+阅读 · 5月26日
专知会员服务
50+阅读 · 5月19日
相关论文
Marco Romanelli,Konstantinos Chatzikokolakis,Catuscia Palamidessi,Pablo Piantanida
0+阅读 · 9月18日
Hien Duy Nguyen
0+阅读 · 9月18日
Ioana Bica,Ahmed M. Alaa,Mihaela van der Schaar
0+阅读 · 9月18日
Estimating the treatment effect of the juvenile stay-at-home order on SARS-CoV-2 infection spread in Saline County, Arkansas
Neil Hwang,Shirshendu Chatterjee,Yanming Di,Sharmodeep Bhattacharyya
0+阅读 · 9月18日
Shalev Ben-David,Eric Blais
0+阅读 · 9月17日
A Fast and Robust Method for Global Topological Functional Optimization
Elchanan Solomon,Alexander Wagner,Paul Bendich
0+阅读 · 9月17日
Kristijonas Cyras,Ramamurthy Badrinath,Swarup Kumar Mohalik,Anusha Mujumdar,Alexandros Nikou,Alessandro Previti,Vaishnavi Sundararajan,Aneta Vulgarakis Feljan
7+阅读 · 9月1日
Jiacheng Yang,Mingxuan Wang,Hao Zhou,Chengqi Zhao,Yong Yu,Weinan Zhang,Lei Li
5+阅读 · 3月26日
Elior Sulem,Omri Abend,Ari Rappoport
3+阅读 · 2018年10月11日
To Cluster, or Not to Cluster: An Analysis of Clusterability Methods
A. Adolfsson,M. Ackerman,N. C. Brownstein
3+阅读 · 2018年8月24日
Top