宾夕法尼亚大学教授用1900页讲透了计算机科学数学基础,还是免费的!

2019 年 8 月 9 日 算法与数据结构
宾夕法尼亚大学教授用1900页讲透了计算机科学数学基础,还是免费的!

程序员书库(ID:OpenSourceTop)综合整理

整理自:https://towardsdatascience.com/the-mathematics-of-machine-learning-894f046c568、https://en.wikipedia.org/wiki/Jean_Gallier、http://www.cis.upenn.edu/~jean/math-basics.pdf等

机器学习算是一个交叉领域,他涉及统计、概率、计算机科学和算法等方面,近几年机器学习发展快速,有人就想要入门学习数据科学领域,使用机器学习(ML)技术创造产品,但是想要很好的掌握其内部的工作原理和算法,有个坚固的数学基础是很有必要的。


为什么说数学很重要?


机器学习的数学之所以很重要,原因有很多,主要包括以下方面:
  • 机器学习需要选择正确的算法,包括训练时间、模型复杂度、参数个数等

  • 选择参数的设置和验证策略

  • 通过理解偏差-方差权衡,识别欠拟合和过拟合

  • 估计正确的置信区间和不确定性。


你需要什么数学水平?

当试图理解像机器学习这样的跨学科领域时,主要的问题是理解这些技术所需的数学知识量和自身的数学水平。



宾夕法尼亚大学计算机和信息科学系教授 Jean Gallier 的开源了一本书籍《Algebra, Topology, Differential Calculus, and Optimization Theory For Computer Science and Engineering》,用了1900页的内容,为读者讲解计算机科学所需的线性代数、微分和最优化理论等问题,这些内容对你深入学习机器学习帮助非常大。


这本书和其他的PDF资料不同,他们更像是作者的个人笔记,目的是帮助读者巩固相关知识,如果你读完这本书,就等同于将大学本科三年的数学课程学完了,而是是适用于CS的数学知识


内容涵盖微积分、线性代数、最优化理论、拓扑等知识,不过,令人纳闷的是,这本书竟然没有概率论这一部分的知识,主要分为10大模块:

1. 线性代数

2. 仿射几何和射影几何

3. 双线性形式的几何

4. 几何:PID、UFD、诺特环、张量、PID 上的模块、规范形

5. 拓扑和微分

6. 最优化理论基础

7. 线性优化

8. 非线性优化

9. 在机器学习中的应用

10. 附录


Jean Gallier教授会在每个知识点前面做一个概括性的总结,让读者对接下来的内容有个心理准备,比如,前面四个章节主要回顾基本的代数结构(群、环、域、向量空间),线性代数的基本概念,如向量空间、子空间、线性组合、线性无关等。讨论了对偶空间、超平面、线性映射等问题。


以下是本书的目录截图:



关于作者



Jean Gallier是宾夕法尼亚大学的教授,拥有法国和美国双国籍,1978年取得博士后学位就从事于计算机领域工作,发表过许多研究论文和书籍,其中《Computational geometry》、《Low-dimensional topology》、《Discrete mathematics》、《Discrete mathematics》等书籍的作者就是Jean Gallier



Jean Gallier有一个个人主页,在上面可以找到他曾经发表过的研究论文和书籍,大部分都可以免费下载,附上主页地址: http://www.cis.upenn.edu/~jean/home.html


书籍地址:http://www.cis.upenn.edu/~jean/math-basics.pdf


你可以在公号后台回复【shuku】获取本书资源。

文件《Algebra, Topology, Differential Calculus, and Optimization Theory For Computer Science and Engineering.pdf》



●编号979,输入编号直达本文

●输入m获取文章

程序员数学之美

程序员数学学习

锻炼数学逻辑思维

登录查看更多
32

相关内容

机器学习使用来自各种数学领域的工具。本文件试图提供一个概括性的数学背景,需要在入门类的机器学习,这是在加州大学伯克利分校被称为CS 189/289A。

https://people.eecs.berkeley.edu/~jrs/189/

我们的假设是读者已经熟悉多变量微积分和线性代数的基本概念(达到UCB数学53/54的水平)。我们强调,本文档不是对必备类的替代。这里介绍的大多数主题涉及的很少;我们打算给出一个概述,并指出感兴趣的读者更全面的理解进一步的细节。

请注意,本文档关注的是机器学习的数学背景,而不是机器学习本身。我们将不讨论特定的机器学习模型或算法,除非可能顺便强调一个数学概念的相关性。

这份文件的早期版本不包括校样。我们已经开始在一些证据中加入一些比较简短并且有助于理解的证据。这些证明不是cs189的必要背景,但可以用来加深读者的理解。

成为VIP会员查看完整内容
0
162

简介: 宾夕法尼亚大学计算逻辑研究院Jean Gallier等人近期在之前发布的书的基础上进行修改,于2019年10月24日发布了一本长达753页的书籍,详细地列出了对机器学习等领域有重要意义的数学理论基础知识。近年来,计算机视觉、机器人、机器学习和数据科学一直是推动技术重大进步的一些关键领域。任何看过上述领域的论文或书籍的人都会被一个奇怪的术语所困扰,这些术语涉及核主成分分析、岭回归、lasso回归、支持向量机(SVM)、拉格朗日乘子、KKT条件等奇怪的术语。但人们很快就会发现,行话背后总是伴随着一个新的领域,背后隐藏着许多经典的“线性代数和优化理论技术”。我们面临的主要挑战是:要从机器学习、计算机视觉等方面了解和使用工具,必须具备线性代数和优化理论的坚实背景。

本书的主要目标是介绍线性代数和优化理论的基本原理,同时考虑到机器学习、机器人和计算机视觉的应用。这项工作由两部分组成,第一个是线性代数,第二个优化理论和应用,尤其是机器学习。 第一部分涉及经典的线性代数,包括主分解和Jordan形式。除了讨论标准的一些主题外,我们还讨论了一些对应用很重要的主题。这些主题包括:

  • Haar基和相应的Haar小波
  • Hadamard矩阵
  • Affine maps
  • 规范和矩阵规范
  • 向量空间中序列和序列的收敛性。矩阵指数e_A及其基本性质
  • The group of unit quaternions, SU(2), and the representation of rotations in SO(3) by unit quaternions
  • 代数与谱图论简介
  • SVD和伪逆的应用,尤其是主成分分析
  • 特征值和特征向量的计算方法,重点是QR算法

另外有比平常更详细介绍的四个主题:

  • Duality
  • Dual norms
  • The geometry of the orthogonal groups O(n) and SO(n), and of the unitary groups U(n) and SU(n)
  • 谱理论

作者介绍: Jean Gallier是宾夕法尼亚大学的教授,拥有法国和美国双国籍,1978年取得博士后学位就从事于计算机领域工作,发表过许多研究论文和书籍,其中《Computational geometry》、《Low-dimensional topology》、《Discrete mathematics》、《Discrete mathematics》等书籍的作者就是Jean Gallier

成为VIP会员查看完整内容
面向计算机视觉、机器人和机器学习的线性代数.pdf
0
105
小贴士
相关资讯
机器学习必备的数学基础有哪些?
人工智能头条
9+阅读 · 2019年10月18日
【资源】机器学习数学全书,1900页PDF下载
全球人工智能
83+阅读 · 2019年10月17日
那些值得推荐和收藏的线性代数学习资源
【资源】这本开放书籍帮你扫清通往ML的数学绊脚石
机器学习算法与Python学习
45+阅读 · 2018年10月28日
谷歌机器学习速成课学前预备书单
图灵教育
4+阅读 · 2018年3月2日
图解高等数学|线性代数
遇见数学
19+阅读 · 2017年10月18日
相关论文
Zixin Luo,Lei Zhou,Xuyang Bai,Hongkai Chen,Jiahui Zhang,Yao Yao,Shiwei Li,Tian Fang,Long Quan
5+阅读 · 2020年3月23日
Mining Disinformation and Fake News: Concepts, Methods, and Recent Advancements
Kai Shu,Suhang Wang,Dongwon Lee,Huan Liu
7+阅读 · 2020年1月2日
Bernhard Schölkopf
10+阅读 · 2019年11月24日
TinyBERT: Distilling BERT for Natural Language Understanding
Xiaoqi Jiao,Yichun Yin,Lifeng Shang,Xin Jiang,Xiao Chen,Linlin Li,Fang Wang,Qun Liu
8+阅读 · 2019年9月23日
Stacked Spatio-Temporal Graph Convolutional Networks for Action Segmentation
Pallabi Ghosh,Yi Yao,Larry S. Davis,Ajay Divakaran
3+阅读 · 2018年12月6日
Konstantinos Skianis,Nikolaos Tziortziotis,Michalis Vazirgiannis
6+阅读 · 2018年7月12日
Approximability of Discriminators Implies Diversity in GANs
Yu Bai,Tengyu Ma,Andrej Risteski
4+阅读 · 2018年6月27日
Peng Zhou,Xintong Han,Vlad I. Morariu,Larry S. Davis
8+阅读 · 2018年5月13日
Tong Yu,Branislav Kveton,Zheng Wen,Hung Bui,Ole J. Mengshoel
4+阅读 · 2018年4月26日
Top