现代情感分析方法

2017 年 7 月 9 日 Python开发者

(点击上方蓝字,快速关注我们)


编译:伯乐在线 - Ree Ray

如有好文章投稿,请点击 → 这里了解详情


情感分析(Sentiment analysis)是自然语言处理(NLP)方法中常见的应用,尤其是以提炼文本情绪内容为目的的分类。利用情感分析这样的方法,可以通过情感评分对定性数据进行定量分析。虽然情感充满了主观性,但情感定量分析已经有许多实用功能,例如企业藉此了解用户对产品的反映,或者判别在线评论中的仇恨言论。


情感分析最简单的形式就是借助包含积极和消极词的字典。每个词在情感上都有分值,通常 +1 代表积极情绪,-1 代表消极。接着,我们简单累加句子中所有词的情感分值来计算最终的总分。显而易见,这样的做法存在许多缺陷,最重要的就是忽略了语境(context)和邻近的词。例如一个简单的短语“not good”最终的情感得分是 0,因为“not”是 -1,“good”是 +1。正常人会将这个短语归类为消极情绪,尽管有“good”的出现。


另一个常见的做法是以文本进行“词袋(bag of words)”建模。我们把每个文本视为 1 到 N 的向量,N 是所有词汇(vocabulary)的大小。每一列是一个词,对应的值是这个词出现的次数。比如说短语“bag of bag of words”可以编码为 [2, 2, 1]。这个值可以作为诸如逻辑回归(logistic regression)、支持向量机(SVM)的机器学习算法的输入,以此来进行分类。这样可以对未知的(unseen)数据进行情感预测。注意这需要已知情感的数据通过监督式学习的方式(supervised fashion)来训练。虽然和前一个方法相比有了明显的进步,但依然忽略了语境,而且数据的大小会随着词汇的大小增加。


Word2Vec 和 Doc2Vec


近几年,Google 开发了名为 Word2Vec 新方法,既能获取词的语境,同时又减少了数据大小。Word2Vec 实际上有两种不一样的方法:CBOW(Continuous Bag of Words,连续词袋)和 Skip-gram。对于 CBOW,目标是在给定邻近词的情况下预测单独的单词。Skip-gram 则相反:我们希望给定一个单独的词(见图 1)来预测某个范围的词。两个方法都使用人工神经网络(Artificial Neural Networks)来作为它们的分类算法。首先,词汇表中的每个单词都是随机的 N 维向量。在训练过程中,算法会利用 CBOW 或者 Skip-gram 来学习每个词的最优向量。


图 1:CBOW 以及 Skip-Gram 结构图,选自《Efficient Estimation of Word Representations in Vector Space》。W(t) 代表当前的单词,而w(t-2), w(t-1) 等则是邻近的单词。


这些词向量现在可以考虑到上下文的语境了。这可以看作是利用基本的代数式来挖掘词的关系(例如:“king” – “man” + “woman” = “queen”)。这些词向量可以作为分类算法的输入来预测情感,有别于词袋模型的方法。这样的优势在于我们可以联系词的语境,并且我们的特征空间(feature space)的维度非常低(通常约为 300,相对于约为 100000 的词汇)。在神经网络提取出这些特征之后,我们还必须手动创建一小部分特征。由于文本长度不一,将以全体词向量的均值作为分类算法的输入来归类整个文档。


然而,即使使用了上述对词向量取均值的方法,我们仍然忽略了词序。Quoc Le 和 Tomas Mikolov 提出了 Doc2Vec 的方法对长度不一的文本进行描述。这个方法除了在原有基础上添加 paragraph / document 向量以外,基本和 Word2Vec 一致,也存在两种方法:DM(Distributed Memory,分布式内存)和分布式词袋(DBOW)。DM 试图在给定前面部分的词和 paragraph 向量来预测后面单独的单词。即使文本中的语境在变化,但 paragraph 向量不会变化,并且能保存词序信息。DBOW 则利用paragraph 来预测段落中一组随机的词(见图 2)。


图 2: Doc2Vec 方法结构图,选自《Distributed Representations of Sentences and Documents》。


一旦经过训练,paragraph 向量就可以作为情感分类器的输入而不需要所有单词。这是目前对 IMDB 电影评论数据集进行情感分类最先进的方法,错误率只有 7.42%。当然,如果这个方法不实用,说这些都没有意义。幸运的是,一个 Python 第三方库 gensim 提供了 Word2Vec 和 Doc2Vec 的优化版本。


基于 Python 的 Word2Vec 举例


在本节我们将会展示怎么在情感分类任务中使用词向量。gensim 这个库是 Anaconda 发行版中的标配,你同样可以利用 pip 来安装。利用它你可以在自己的语料库(一个文档数据集)中训练词向量或者导入 C text 或二进制格式的已经训练好的向量。


from gensim.models.word2vec import Word2Vec

 

model = Word2Vec.load_word2vec_format('vectors.txt', binary=False) #C text 格式

model = Word2Vec.load_word2vec_format('vectors.bin', binary=True) #二进制格式


我发现读取谷歌已经训练好的词向量尤其管用,这些向量来自谷歌新闻(Google News),由超过千亿级别的词训练而成,“已经训练过的词和短语向量”可以在这里找到。注意未压缩的文件有 3.5 G。通过 Google 词向量我们能够发现词与词之间有趣的关联:


from gensim.models.word2vec import Word2Vec

 

model = Word2Vec.load_word2vec_format('GoogleNews-vectors-negative300.bin', binary=True)

 

model.most_similar(positive=['woman', 'king'], negative=['man'], topn=5)

 

[(u'queen', 0.711819589138031),

(u'monarch', 0.618967592716217),

(u'princess', 0.5902432799339294),

(u'crown_prince', 0.5499461889266968),

(u'prince', 0.5377323031425476)]


有趣的是它可以发现语法关系,例如识别最高级(superlatives)和动词词干(stems):


“biggest” – “big” + “small” = “smallest”


model.most_similar(positive=['biggest','small'], negative=['big'], topn=5)

 

[(u'smallest', 0.6086569428443909),

(u'largest', 0.6007465720176697),

(u'tiny', 0.5387299656867981),

(u'large', 0.456944078207016),

(u'minuscule', 0.43401968479156494)]


“ate” – “eat” + “speak” = “spoke”


model.most_similar(positive=['ate','speak'], negative=['eat'], topn=5)

 

[(u'spoke', 0.6965223550796509),

(u'speaking', 0.6261293292045593),

(u'conversed', 0.5754593014717102),

(u'spoken', 0.570488452911377),

(u'speaks', 0.5630602240562439)]


由以上例子可以清楚认识到 Word2Vec 能够学习词与词之间的有意义的关系。这也就是为什么它对于许多 NLP 任务有如此大的威力,包括在本文中的情感分析。在我们用它解决起情感分析问题以前,让我们先测试一下 Word2Vec 对词分类(separate)和聚类(cluster)的本事。我们会用到三个示例词集:食物类(food)、运动类(sports)和天气类(weather),选自一个非常棒的网站 Enchanted Learning。因为这些向量有 300 个维度,为了在 2D 平面上可视化,我们会用到 Scikit-Learn’s 中叫作“t-SNE”的降维算法操作


首先必须像下面这样取得词向量:


import numpy as np

 

with open('food_words.txt', 'r') as infile:

    food_words = infile.readlines()

 

with open('sports_words.txt', 'r') as infile:

    sports_words = infile.readlines()

 

with open('weather_words.txt', 'r') as infile:

    weather_words = infile.readlines()

 

def getWordVecs(words):

    vecs = []

    for word in words:

        word = word.replace('n', '')

        try:

            vecs.append(model[word].reshape((1,300)))

        except KeyError:

            continue

    vecs = np.concatenate(vecs)

    return np.array(vecs, dtype='float') #TSNE expects float type values

 

food_vecs = getWordVecs(food_words)

sports_vecs = getWordVecs(sports_words)

weather_vecs = getWordVecs(weather_words)


我们接着使用 TSNE 和 matplotlib 可视化聚类,代码如下:


from sklearn.manifold import TSNE

import matplotlib.pyplot as plt

 

ts = TSNE(2)

reduced_vecs = ts.fit_transform(np.concatenate((food_vecs, sports_vecs, weather_vecs)))

 

#color points by word group to see if Word2Vec can separate them

for i in range(len(reduced_vecs)):

    if i < len(food_vecs):

        #food words colored blue

        color = 'b'

    elif i >= len(food_vecs) and i < (len(food_vecs) + len(sports_vecs)):

        #sports words colored red

        color = 'r'

    else:

        #weather words colored green

        color = 'g'

    plt.plot(reduced_vecs[i,0], reduced_vecs[i,1], marker='o', color=color, markersize=8)


import numpy as np

 

with open('food_words.txt', 'r') as infile:

    food_words = infile.readlines()

 

with open('sports_words.txt', 'r') as infile:

    sports_words = infile.readlines()

 

with open('weather_words.txt', 'r') as infile:

    weather_words = infile.readlines()

 

def getWordVecs(words):

    vecs = []

    for word in words:

        word = word.replace('n', '')

        try:

            vecs.append(model[word].reshape((1,300)))

        except KeyError:

            continue

    vecs = np.concatenate(vecs)

    return np.array(vecs, dtype='float') #TSNE 要求浮点型的值

 

food_vecs = getWordVecs(food_words)

sports_vecs = getWordVecs(sports_words)

weather_vecs = getWordVecs(weather_words)

 

结果如下:



图 3:食物类单词(蓝色),运动类单词(红色)和天气类单词(绿色)T-SNE 集群效果图。


我们可以从上面的例子看到,Word2Vec 不仅能有效分类不相关的单词,同样也能聚类类似的词。


推特 Emoji 情感分析


现在我们进入下一个例程,利用符号表情作为搜索词的推特情感分析。我们把这些符号表情作为我们数据的“模糊(fuzzy)”标签;微笑表情(:-))与积极情绪对应,而皱眉表情(:-()则对应消极情绪。在大约 400,000 条推特数据中,积极和消极的各占一半(even split)。我们对积极和消极情绪的推特进行了随机采样,并按80 / 20 的比例分为了训练集/ 测试集。我们接着在 Word2Vec 模型上训练推特。为了避免数据泄露(data leakage),在训练数据集分类完成以前我们都不会在 Word2Vec 上训练。为了结构化分类器的输入,我们对所有推特词向量取均值。我们会用到 Scikit-Learn 这个第三方库做大量的机器学习。


我们首先导入我们的数据并训练 Word2Vec 模型


from sklearn.cross_validation import train_test_split

from gensim.models.word2vec import Word2Vec

 

with open('twitter_data/pos_tweets.txt', 'r') as infile:

    pos_tweets = infile.readlines()

 

with open('twitter_data/neg_tweets.txt', 'r') as infile:

    neg_tweets = infile.readlines()

 

# 1 代表积极情绪,0 代表消极情绪

y = np.concatenate((np.ones(len(pos_tweets)), np.zeros(len(neg_tweets))))

 

x_train, x_test, y_train, y_test = train_test_split(np.concatenate((pos_tweets, neg_tweets)), y, test_size=0.2)

 

# 零星的预处理

def cleanText(corpus):

    corpus = [z.lower().replace('n','').split() for z in corpus]

    return corpus

 

x_train = cleanText(x_train)

x_test = cleanText(x_test)

 

n_dim = 300

# 初始化模型并创建词汇表(vocab)

imdb_w2v = Word2Vec(size=n_dim, min_count=10)

imdb_w2v.build_vocab(x_train)

 

# 训练模型 (会花费几分钟)

imdb_w2v.train(x_train)


下面我们必须对输入文本创建词向量,为了平均推特中的所有词向量,将用到如下的函数:


# 对训练数据集创建词向量,接着进行比例缩放(scale)。

def buildWordVector(text, size):

    vec = np.zeros(size).reshape((1, size))

    count = 0.

    for word in text:

        try:

            vec += imdb_w2v[word].reshape((1, size))

            count += 1.

        except KeyError:

            continue

    if count != 0:

        vec /= count

    return vec


对我们的数据集进行缩放是标准化处理的一部分。通过均值为零的高斯分布,意味着大于均值则为积极,小于则为消极。许多机器学习模型要求使用缩放过的数据集来获得更好的处理效果,尤其是多特征(例如文本分类)。


from sklearn.preprocessing import scale

train_vecs = np.concatenate([buildWordVector(z, n_dim) for z in x_train])

train_vecs = scale(train_vecs)

 

# 在测试推特数据集中训练 Word2Vec

imdb_w2v.train(x_test)


最终我们必须创建测试数据向量并进行比例缩放来评估。


# 创建测试推特向量并缩放

test_vecs = np.concatenate([buildWordVector(z, n_dim) for z in x_test])

test_vecs = scale(test_vecs)


下面我们想通过计算测试数据的预测精度来验证我们的分类器,同时测试它们的 ROC 曲线(Receiver Operating Characteristic,受试者操作特征曲线)。当模型参数调节时,ROC 曲线会测试分类器的真阳性(true-positive)以及假阳性(false-positive)。本例中,我们通过调节边界阈值概率(cut-off threshold probability)将某条推特分类为积极或消极情绪。通常,更希望得到最大化的真阳性和最小化的假阳性,也就是 ROC 曲线下方最大的区域(AUC)。通过这里更多地了解 ROC 曲线。


开始训练我们的分类器,本例对逻辑回归(Logistic Regression)使用随机梯度下降(Stochastic Gradient Descent)。


# 使用分类算法(例如:随机逻辑回归(Stochastic Logistic Regression)来训练数据集,接着从 sklearn.linear_model 导入 SGDClassifier 进行模型处理)

 

lr = SGDClassifier(loss='log', penalty='l1')

lr.fit(train_vecs, y_train)

 

print 'Test Accuracy: %.2f'%lr.score(test_vecs, y_test)


我们利用 matplotlib 和 Scikit-Learn 的 metric 包中的 roc_curve 创建 ROC 曲线来评估。


# 创建 ROC 曲线

from sklearn.metrics import roc_curve, auc

import matplotlib.pyplot as plt

 

pred_probas = lr.predict_proba(test_vecs)[:,1]

 

fpr,tpr,_ = roc_curve(y_test, pred_probas)

roc_auc = auc(fpr,tpr)

plt.plot(fpr,tpr,label='area = %.2f' %roc_auc)

plt.plot([0, 1], [0, 1], 'k--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.legend(loc='lower right')

 

plt.show()


曲线结果如下:



图 4:逻辑分类器对推特训练数据的 ROC 曲线


没有创建任何特征以及最小化的文本预处理,利用 Scikit-Learn 提供的简单线性模型我们已经实现了 73% 的测试准确率。有趣的是,移除了标点符号实际上反而降低了准确率,说明当“?”或“!”出现时,Word2Vec 能够找到有趣的特征。将这些标点视为独立的单词,训练更长的时间,做更多的预处理,调节 Word2Vec 和分类器中的参数这些方法都有助于准确率的提升。我已经发现配合使用人工神经网络(ANN)能够提高大概 5% 的准确率。因为 Scikit-Learn 没有提供 ANN 分类器的实现工具,所以我自己写了一个:


from NNet import NeuralNet

 

nnet = NeuralNet(100, learn_rate=1e-1, penalty=1e-8)

maxiter = 1000

batch = 150

_ = nnet.fit(train_vecs, y_train, fine_tune=False, maxiter=maxiter, SGD=True, batch=batch, rho=0.9)

 

print 'Test Accuracy: %.2f'%nnet.score(test_vecs, y_test)


最终准确率为 77%。不论什么机器学习任务,选对模型的艺术性大于科学性。如果你想用我写的库你可以在这找到。友情提示,它看起来比较乱并且没有定期维护!如果你想贡献代码欢迎 fork 我的代码仓。它非常需要被宠幸(TLC)。


基于 Doc2Vec 的电影评论分析


在推特的例子中,使用词向量的均值效果良好。这是因为推特通常是几十个词的长度,即使取均值也能保留相关的特征。然而,一旦我们上升到段落的规模,忽略词序和上下文信息将面临丢失大量特征的风险。这样的情况下更适合使用 Doc2Vec 创建输入特征。我们将使用 IMDB 电影评论数据集 作为示例来测试 Word2Vec 在情感分析中的有效性。数据集中包含了 25,000 条积极评论,25,000 条消极评论和 50,000 条未标记的电影评论。我们首先利用 Doc2Vec 对未标记评论进行训练。除了同时使用 DM 和 DBOW 向量作为输入以外,方法和上一节 Word2Vec 例子相同。


import gensim

 

LabeledSentence = gensim.models.doc2vec.LabeledSentence

 

from sklearn.cross_validation import train_test_split

import numpy as np

 

with open('IMDB_data/pos.txt','r') as infile:

    pos_reviews = infile.readlines()

 

with open('IMDB_data/neg.txt','r') as infile:

    neg_reviews = infile.readlines()

 

with open('IMDB_data/unsup.txt','r') as infile:

    unsup_reviews = infile.readlines()

 

# 1 代表积极情绪,0 代表消极情绪

y = np.concatenate((np.ones(len(pos_reviews)), np.zeros(len(neg_reviews))))

 

x_train, x_test, y_train, y_test = train_test_split(np.concatenate((pos_reviews, neg_reviews)), y, test_size=0.2)

 

# 零星的预处理

def cleanText(corpus):

    punctuation = """.,?!:;(){}[]"""

    corpus = [z.lower().replace('n','') for z in corpus]

    corpus = [z.replace('<br />', ' ') for z in corpus]

 

    # 将标点视为一个单词

    for c in punctuation:

        corpus = [z.replace(c, ' %s '%c) for z in corpus]

    corpus = [z.split() for z in corpus]

    return corpus

 

x_train = cleanText(x_train)

x_test = cleanText(x_test)

unsup_reviews = cleanText(unsup_reviews)

 

# Gensim 的 Doc2Vec 工具要求每个文档/段落包含一个与之关联的标签。我们利用 LabeledSentence 进行处理。格式形如 “TRAIN_i” 或者 “TEST_i”,其中 “i” 是假的评论索引。

def labelizeReviews(reviews, label_type):

    labelized = []

    for i,v in enumerate(reviews):

        label = '%s_%s'%(label_type,i)

        labelized.append(LabeledSentence(v, [label]))

    return labelized

 

x_train = labelizeReviews(x_train, 'TRAIN')

x_test = labelizeReviews(x_test, 'TEST')

unsup_reviews = labelizeReviews(unsup_reviews, 'UNSUP')


这么一来创建了 LabeledSentence 类型对象:


<gensim.models.doc2vec.LabeledSentence at 0xedd70b70>


下面我们实例化两个 Doc2Vec 模型,DM 和 DBOW。gensim 文档建议多次训练数据,并且在每一步(pass)调节学习率(learning rate)或者用随机顺序输入文本。接着我们收集了通过模型训练后的电影评论向量。


import random

 

size = 400

 

# 实例化 DM 和 DBOW 模型

model_dm = gensim.models.Doc2Vec(min_count=1, window=10, size=size, sample=1e-3, negative=5, workers=3)

model_dbow = gensim.models.Doc2Vec(min_count=1, window=10, size=size, sample=1e-3, negative=5, dm=0, workers=3)

 

# 对所有评论创建词汇表

model_dm.build_vocab(np.concatenate((x_train, x_test, unsup_reviews)))

model_dbow.build_vocab(np.concatenate((x_train, x_test, unsup_reviews)))

 

# 多次传入数据集,通过每次滑动(shuffling)来提高准确率。

all_train_reviews = np.concatenate((x_train, unsup_reviews))

for epoch in range(10):

    perm = np.random.permutation(all_train_reviews.shape[0])

    model_dm.train(all_train_reviews[perm])

    model_dbow.train(all_train_reviews[perm])

 

# 从我们的模型中获得训练过的向量

def getVecs(model, corpus, size):

    vecs = [np.array(model[z.labels[0]]).reshape((1, size)) for z in corpus]

    return np.concatenate(vecs)

 

train_vecs_dm = getVecs(model_dm, x_train, size)

train_vecs_dbow = getVecs(model_dbow, x_train, size)

 

train_vecs = np.hstack((train_vecs_dm, train_vecs_dbow))

 

# 训练测试数据集

x_test = np.array(x_test)

 

for epoch in range(10):

    perm = np.random.permutation(x_test.shape[0])

    model_dm.train(x_test[perm])

    model_dbow.train(x_test[perm])

 

# 创建测试数据集向量

test_vecs_dm = getVecs(model_dm, x_test, size)

test_vecs_dbow = getVecs(model_dbow, x_test, size)

 

test_vecs = np.hstack((test_vecs_dm, test_vecs_dbow))


现在我们准备对我们的评论向量训练一个分类器。我们再次使用 sklearn 的 SGDClassifier。


from sklearn.linear_model import SGDClassifier

 

lr = SGDClassifier(loss='log', penalty='l1')

lr.fit(train_vecs, y_train)

 

print 'Test Accuracy: %.2f'%lr.score(test_vecs, y_test)


这个模型的测试准确率达到了 0.86。我们也构建了如下的分类器 ROC 曲线:


#Create ROC curve

from sklearn.metrics import roc_curve, auc

%matplotlib inline

 

import matplotlib.pyplot as plt

 

pred_probas = lr.predict_proba(test_vecs)[:,1]

 

fpr,tpr,_ = roc_curve(y_test, pred_probas)

roc_auc = auc(fpr,tpr)

plt.plot(fpr,tpr,label='area = %.2f' %roc_auc)

plt.plot([0, 1], [0, 1], 'k--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.legend(loc='lower right')

 

plt.show()



图 5:基于 IMDB 电影评论训练数据的逻辑分类器(logistic classifier)的 ROC 曲线


原始论文 强调了用有 50 个结点的神经网络加上一个简单的逻辑回归分类器,效果会有提高:


from NNet import NeuralNet

 

nnet = NeuralNet(50, learn_rate=1e-2)

maxiter = 500

batch = 150

_ = nnet.fit(train_vecs, y_train, fine_tune=False, maxiter=maxiter, SGD=True, batch=batch, rho=0.9)

 

print 'Test Accuracy: %.2f'%nnet.score(test_vecs, y_test)


有趣的是,我们在这儿并没有看到什么提高。测试准确率是 0.85,我们也没能达到他们所说的 7.42% 的测试错误率。原因有很多:我们在每一步(epochs)对于训练/测试数据没有训练足够,他们实现 Doc2Vec 和 ANN 的方式不同,他们的超参数不同等等。因为论文中并没有谈及细节,所以难以确知真正原因。不管怎样,在进行了零星预处理以及没有构造和选取特征的情况下,我们还是得到了 86% 的准确率。并不需要花哨的卷积(convolutions)和树库(treebanks)!


结论


我希望已经你不仅见识了 Word2Vec 和 Doc2Vec 的强大,而且能够通过标准工具诸如 Python 和 gensim 来应用它们。只需要非常简单的算法我们即可得到丰富的词和段落向量,足以在所有 NLP 应用中使用。另外更棒的是 Google 发布了基于超大规模数据集预训练(pre-train)的词向量。如果你想在大规模数据集中训练自己的词向量,可以利用 Apache Spark’s MLlib 的 Word2Vec 来实现。Happy NLP’ing!


扩展阅读


  • A Word is Worth a Thousand Vectors

  • Word2Vec Tutorial

  • Gensim

  • Scikit-Learn: Working with Text Data

  • Natural Language Processing with Python


看完本文有收获?请转发分享给更多人

关注「大数据与机器学习文摘」,成为Top 1%

登录查看更多
13

相关内容

分散式表示即将语言表示为稠密、低维、连续的向量。 研究者最早发现学习得到词嵌入之间存在类比关系。比如apple−apples ≈ car−cars, man−woman ≈ king – queen 等。这些方法都可以直接在大规模无标注语料上进行训练。词嵌入的质量也非常依赖于上下文窗口大小的选择。通常大的上下文窗口学到的词嵌入更反映主题信息,而小的上下文窗口学到的词嵌入更反映词的功能和上下文语义信息。
【干货书】现代数据平台架构,636页pdf
专知会员服务
250+阅读 · 2020年6月15日
深度学习自然语言处理概述,216页ppt,Jindřich Helcl
专知会员服务
209+阅读 · 2020年4月26日
【CVPR2020】多模态社会媒体中危机事件分类
专知会员服务
53+阅读 · 2020年4月18日
【教程】自然语言处理中的迁移学习原理,41 页PPT
专知会员服务
93+阅读 · 2020年2月8日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
75+阅读 · 2020年2月3日
 【中科院信工所】社交媒体情感分析,40页ppt
专知会员服务
91+阅读 · 2019年12月13日
一文读懂深度学习文本分类方法
AINLP
15+阅读 · 2019年6月6日
了解情感分析中的NLP技术么?
七月在线实验室
9+阅读 · 2019年4月12日
Twitter情感分析及其可视化
数据挖掘入门与实战
21+阅读 · 2018年3月20日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
情感分析的新方法,使用word2vec对微博文本进行情感分析和分类
数据挖掘入门与实战
22+阅读 · 2018年1月6日
深度学习 | 利用词嵌入对文本进行情感分析
沈浩老师
11+阅读 · 2017年10月19日
在深度学习TensorFlow 框架上使用 LSTM 进行情感分析
北京思腾合力科技有限公司
4+阅读 · 2017年8月9日
干货 | 情感分析语料库
机器学习算法与Python学习
69+阅读 · 2017年7月3日
Arxiv
6+阅读 · 2018年8月27日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
Arxiv
7+阅读 · 2018年1月30日
Arxiv
8+阅读 · 2018年1月25日
Arxiv
25+阅读 · 2018年1月24日
Arxiv
5+阅读 · 2018年1月23日
VIP会员
相关VIP内容
相关资讯
一文读懂深度学习文本分类方法
AINLP
15+阅读 · 2019年6月6日
了解情感分析中的NLP技术么?
七月在线实验室
9+阅读 · 2019年4月12日
Twitter情感分析及其可视化
数据挖掘入门与实战
21+阅读 · 2018年3月20日
【推荐】深度学习情感分析综述
机器学习研究会
58+阅读 · 2018年1月26日
情感分析的新方法,使用word2vec对微博文本进行情感分析和分类
数据挖掘入门与实战
22+阅读 · 2018年1月6日
深度学习 | 利用词嵌入对文本进行情感分析
沈浩老师
11+阅读 · 2017年10月19日
在深度学习TensorFlow 框架上使用 LSTM 进行情感分析
北京思腾合力科技有限公司
4+阅读 · 2017年8月9日
干货 | 情感分析语料库
机器学习算法与Python学习
69+阅读 · 2017年7月3日
相关论文
Arxiv
6+阅读 · 2018年8月27日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
Arxiv
7+阅读 · 2018年1月30日
Arxiv
8+阅读 · 2018年1月25日
Arxiv
25+阅读 · 2018年1月24日
Arxiv
5+阅读 · 2018年1月23日
Top
微信扫码咨询专知VIP会员