There is currently a burgeoning demand for deploying deep learning (DL) models on ubiquitous edge Internet of Things devices attributing to their low latency and high privacy preservation. However, DL models are often large in size and require large-scale computation, which prevents them from being placed directly onto IoT devices where resources are constrained and 32-bit floating-point operations are unavailable. Model quantization is a pragmatic solution, which enables DL deployment on mobile devices and embedded systems by effortlessly post-quantizing a large high-precision model into a small low-precision model while retaining the model inference accuracy. This work reveals that the standard quantization operation can be abused to activate a backdoor. We demonstrate that a full-precision backdoored model that does not have any backdoor effect in the presence of a trigger -- as the backdoor is dormant -- can be activated by the default TensorFlow-Lite quantization, the only product-ready quantization framework to date. We ascertain that all trained float-32 backdoored models exhibit no backdoor effect even in the presence of trigger inputs. State-of-the-art frontend detection approaches, such as Neural Cleanse and STRIP, fail to identify the backdoor in the float-32 models. When each of the float-32 models is converted into an int-8 format model through the standard TFLite post-training quantization, the backdoor is activated in the quantized model, which shows a stable attack success rate close to 100% upon inputs with the trigger, while behaves normally upon non-trigger inputs. This work highlights that a stealthy security threat occurs when end users utilize the on-device post-training model quantization toolkits, informing security researchers of cross-platform overhaul of DL models post quantization even if they pass frontend inspections.


翻译:目前,在无处不在的边缘互联网上部署深学习(DL)模型的需求急剧增加,原因是其低延迟和高隐私保护。然而,DL模型的大小往往很大,需要大规模计算,从而无法直接放置在资源受限和32位浮点操作无法提供的 IoT 设备上。模型量化是一个务实的解决方案,它使得DL在移动设备和嵌入系统中的部署能够不费力地将大型高精度模型安装到一个小型低精度的低精度模型中,同时保留模型的精确度。这项工作表明,标准四分解模型的大小往往很大,可以被滥用来启动后门。我们证明,完全精确的后门模型不会在触发因素时产生后门效应(因为后门正在休眠) 。如果默认的TensorFlor-Flor-Lite模型的变异化时,它是唯一在后门前准备的变异度框架。我们确定,所有经过训练的三十二号后门型模型在前门非感推价输入时都会被滥用。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
28+阅读 · 2021年8月2日
【CMU】最新深度学习课程, Introduction to Deep Learning
专知会员服务
36+阅读 · 2020年9月12日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
2+阅读 · 2021年10月15日
Arxiv
6+阅读 · 2021年3月30日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
5+阅读 · 2020年8月28日
Arxiv
43+阅读 · 2019年12月20日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
5+阅读 · 2018年1月14日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
2+阅读 · 2021年10月15日
Arxiv
6+阅读 · 2021年3月30日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
5+阅读 · 2020年8月28日
Arxiv
43+阅读 · 2019年12月20日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
5+阅读 · 2018年1月14日
Top
微信扫码咨询专知VIP会员