Federated Learning (FL) enables the multiple participating devices to collaboratively contribute to a global neural network model while keeping the training data locally. Unlike the centralized training setting, the non-IID and imbalanced (statistical heterogeneity) training data of FL is distributed in the federated network, which will increase the divergences between the local models and global model and further degrade the performance. In this paper, we propose a novel federated learning framework FedGroup based on a similarity-based clustering strategy, in which we 1) group the training of clients based on the ternary cosine similarities between the clients' parameter updates; 2) reduce the clustering complexity of high-dimension low-sample size (HDLSS) parameter updates data by decomposed the direction vectors to derive the ternary cosine similarity metrics for clustering. FedGroup can achieve improvements by dividing joint optimization into groups of sub-optimization, and can be combined with \textit{FedProx}, the state-of-the-art federated optimization algorithm. We evaluate FedGroup and FedGrouProx (combined with FedProx) on several open datasets. The experimental results show that our proposed frameworks significantly improving absolute test accuracy by +14.7% on FEMNIST compared to FedAvg, +5.4% on Sentiment140 compared to FedProx.


翻译:联邦学习联合会(FL) 使多个参与设备能够合作为全球神经网络模式作出贡献,同时保持当地的培训数据。 与中央培训环境不同,FL的非IID和不平衡(统计异质性)培训数据在联邦网络中分布,这将增加本地模型和全球模型之间的差异,并进一步降低绩效。 在本文件中,我们提议基于类似基于集群战略的FedGroup 创新的联邦学习框架FedGroup(我们1) 将客户培训基于客户参数更新之间长期共生异性;2 降低高二分低抽样规模(HDLSS)参数的组合复杂性,通过解析方向矢量来得出用于集群的永久共生性相似度度度指标来更新数据。 FedGroup可以将联合优化分为次优化组,并可以与\textit{Fedprox}、 州-艺术联合优化数种异性调整算法(我们通过FedGroGroup 和FedGEMx的绝对值测试框架对FFDGroup 做了大幅的对比。

2
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
47+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年12月3日
Arxiv
0+阅读 · 2020年12月3日
Arxiv
0+阅读 · 2020年12月1日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
47+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员