Motivated by applications in machine learning and operations research, we study regret minimization with stochastic first-order oracle feedback in online constrained, and possibly non-smooth, non-convex problems. In this setting, the minimization of external regret is beyond reach for first-order methods, so we focus on a local regret measure defined via a proximal-gradient mapping. To achieve no (local) regret in this setting, we develop a prox-grad method based on stochastic first-order feedback, and a simpler method for when access to a perfect first-order oracle is possible. Both methods are min-max order-optimal, and we also establish a bound on the number of prox-grad queries these methods require. As an important application of our results, we also obtain a link between online and offline non-convex stochastic optimization manifested as a new prox-grad scheme with complexity guarantees matching those obtained via variance reduction techniques.
翻译:以机器学习和操作研究的应用为动力,我们研究如何在网上限制和可能非悬浮、非阴道问题中,以随机第一阶或触角反馈进行最小化。在这种背景下,将外部遗憾最小化是一阶方法所无法达到的,因此我们侧重于通过准偏差绘图界定的当地遗憾度量。为了在这种环境下不(当地)后悔,我们开发了一个基于随机第一阶反馈的预科阶段法,以及一种在有可能获得完美第一阶或触角时的简单方法。这两种方法都是微量最大秩序最优的,我们还设定了这些方法需要的分层查询的界限。作为我们结果的一个重要应用,我们还获得了在线和非线下非康韦克斯吸尘优化之间的链接,其表现为一种新的分层优化方案,其复杂性保证与通过差异减少技术获得的匹配。