Implicit neural networks are a general class of learning models that replace the layers in traditional feedforward models with implicit algebraic equations. Compared to traditional learning models, implicit networks offer competitive performance and reduced memory consumption. However, they can remain brittle with respect to input adversarial perturbations. This paper proposes a theoretical and computational framework for robustness verification of implicit neural networks; our framework blends together mixed monotone systems theory and contraction theory. First, given an implicit neural network, we introduce a related embedded network and show that, given an $\ell_\infty$-norm box constraint on the input, the embedded network provides an $\ell_\infty$-norm box overapproximation for the output of the given network. Second, using $\ell_{\infty}$-matrix measures, we propose sufficient conditions for well-posedness of both the original and embedded system and design an iterative algorithm to compute the $\ell_{\infty}$-norm box robustness margins for reachability and classification problems. Third, of independent value, we propose a novel relative classifier variable that leads to tighter bounds on the certified adversarial robustness in classification problems. Finally, we perform numerical simulations on a Non-Euclidean Monotone Operator Network (NEMON) trained on the MNIST dataset. In these simulations, we compare the accuracy and run time of our mixed monotone contractive approach with the existing robustness verification approaches in the literature for estimating the certified adversarial robustness.


翻译:隐性神经网络是一种普通学习模式, 以隐含的代数方程式取代传统进料模型的层层。 与传统学习模式相比, 隐性网络提供竞争性性能和减少内存消耗。 但是, 与输入对称扰动相比, 隐性神经网络仍然会变得很弱。 本文提出一个理论和计算框架, 用于对隐性神经网络进行稳健性核查; 我们的框架将单质系统理论和收缩理论混合在一起。 首先, 鉴于隐含的神经网络, 我们引入了一个相关的内嵌网络, 并显示, 与传统的学习模式相比, 隐性网络提供了一种 $\ incenty$- inty$- 诺性框限制, 内嵌性网络输出有一个 $\ell inty- entrmormexcity 框内, 内含经认证的内置性内置的内置性内置值, 内置的内置性内置内置内置内置内置内置内置内置的内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置的内置内置内置内置内置的内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置的内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内置内

0
下载
关闭预览

相关内容

专知会员服务
19+阅读 · 2021年8月24日
专知会员服务
158+阅读 · 2020年1月16日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月13日
Arxiv
0+阅读 · 2022年2月10日
Arxiv
9+阅读 · 2018年2月4日
Arxiv
4+阅读 · 2017年12月25日
VIP会员
相关VIP内容
专知会员服务
19+阅读 · 2021年8月24日
专知会员服务
158+阅读 · 2020年1月16日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员