This paper addresses the problem of estimating and tracking human body keypoints in complex, multi-person video. We propose an extremely lightweight yet highly effective approach that builds upon the latest advancements in human detection and video understanding. Our method operates in two-stages: keypoint estimation in frames or short clips, followed by lightweight tracking to generate keypoint predictions linked over the entire video. For frame-level pose estimation we experiment with Mask R-CNN, as well as our own proposed 3D extension of this model, which leverages temporal information over small clips to generate more robust frame predictions. We conduct extensive ablative experiments on the newly released multi-person video pose estimation benchmark, PoseTrack, to validate various design choices of our model. Our approach achieves an accuracy of 55.2% on the validation and 51.8% on the test set using the Multi-Object Tracking Accuracy (MOTA) metric, and achieves state of the art performance on the ICCV 2017 PoseTrack keypoint tracking challenge.

5
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem

Human pose estimation - the process of recognizing human keypoints in a given image - is one of the most important tasks in computer vision and has a wide range of applications including movement diagnostics, surveillance, or self-driving vehicle. The accuracy of human keypoint prediction is increasingly improved thanks to the burgeoning development of deep learning. Most existing methods solved human pose estimation by generating heatmaps in which the ith heatmap indicates the location confidence of the ith keypoint. In this paper, we introduce novel network structures referred to as multiresolution representation learning for human keypoint prediction. At different resolutions in the learning process, our networks branch off and use extra layers to learn heatmap generation. We firstly consider the architectures for generating the multiresolution heatmaps after obtaining the lowest-resolution feature maps. Our second approach allows learning during the process of feature extraction in which the heatmaps are generated at each resolution of the feature extractor. The first and second approaches are referred to as multi-resolution heatmap learning and multi-resolution feature map learning respectively. Our architectures are simple yet effective, achieving good performance. We conducted experiments on two common benchmarks for human pose estimation: MS-COCO and MPII dataset.

0
5
下载
预览

In this work we propose a new method for simultaneous object detection and 6DoF pose estimation. Unlike most recent techniques for CNN-based object detection and pose estimation, we do not base our approach on the common 2D counterparts, i.e. SSD and YOLO, but propose a new scheme. Instead of regressing 2D or 3D bounding boxes, we output full-sized 2D images containing multiclass object masks and dense 2D-3D correspondences. Having them at hand, a 6D pose is computed for each detected object using the PnP algorithm supplemented with RANSAC. This strategy allows for substantially better pose estimates due to a much higher number of relevant pose correspondences. Furthermore, the method is real-time capable, conceptually simple and not bound to any particular detection paradigms, such as R-CNN, SSD or YOLO. We test our method for single- and multiple-object pose estimation and compare the performance with the former state-of-the-art approaches. Moreover, we demonstrate how to use our pipeline when only synthetic renderings are available. In both cases, we outperform the former state-of-the-art by a large margin.

0
5
下载
预览

3D vehicle detection and tracking from a monocular camera requires detecting and associating vehicles, and estimating their locations and extents together. It is challenging because vehicles are in constant motion and it is practically impossible to recover the 3D positions from a single image. In this paper, we propose a novel framework that jointly detects and tracks 3D vehicle bounding boxes. Our approach leverages 3D pose estimation to learn 2D patch association overtime and uses temporal information from tracking to obtain stable 3D estimation. Our method also leverages 3D box depth ordering and motion to link together the tracks of occluded objects. We train our system on realistic 3D virtual environments, collecting a new diverse, large-scale and densely annotated dataset with accurate 3D trajectory annotations. Our experiments demonstrate that our method benefits from inferring 3D for both data association and tracking robustness, leveraging our dynamic 3D tracking dataset.

0
8
下载
预览

Accurate detection and tracking of objects is vital for effective video understanding. In previous work, the two tasks have been combined in a way that tracking is based heavily on detection, but the detection benefits marginally from the tracking. To increase synergy, we propose to more tightly integrate the tasks by conditioning the object detection in the current frame on tracklets computed in prior frames. With this approach, the object detection results not only have high detection responses, but also improved coherence with the existing tracklets. This greater coherence leads to estimated object trajectories that are smoother and more stable than the jittered paths obtained without tracklet-conditioned detection. Over extensive experiments, this approach is shown to achieve state-of-the-art performance in terms of both detection and tracking accuracy, as well as noticeable improvements in tracking stability.

0
3
下载
预览

Latest deep learning methods for object detection provide remarkable performance, but have limits when used in robotic applications. One of the most relevant issues is the long training time, which is due to the large size and imbalance of the associated training sets, characterized by few positive and a large number of negative examples (i.e. background). Proposed approaches are based on end-to-end learning by back-propagation [22] or kernel methods trained with Hard Negatives Mining on top of deep features [8]. These solutions are effective, but prohibitively slow for on-line applications. In this paper we propose a novel pipeline for object detection that overcomes this problem and provides comparable performance, with a 60x training speedup. Our pipeline combines (i) the Region Proposal Network and the deep feature extractor from [22] to efficiently select candidate RoIs and encode them into powerful representations, with (ii) the FALKON [23] algorithm, a novel kernel-based method that allows fast training on large scale problems (millions of points). We address the size and imbalance of training data by exploiting the stochastic subsampling intrinsic into the method and a novel, fast, bootstrapping approach. We assess the effectiveness of the approach on a standard Computer Vision dataset (PASCAL VOC 2007 [5]) and demonstrate its applicability to a real robotic scenario with the iCubWorld Transformations [18] dataset.

0
6
下载
预览

We introduce Spatial-Temporal Memory Networks for video object detection. At its core, a novel Spatial-Temporal Memory module (STMM) serves as the recurrent computation unit to model long-term temporal appearance and motion dynamics. The STMM's design enables full integration of pretrained backbone CNN weights, which we find to be critical for accurate detection. Furthermore, in order to tackle object motion in videos, we propose a novel MatchTrans module to align the spatial-temporal memory from frame to frame. Our method produces state-of-the-art results on the benchmark ImageNet VID dataset, and our ablative studies clearly demonstrate the contribution of our different design choices. We release our code and models at http://fanyix.cs.ucdavis.edu/project/stmn/project.html.

0
3
下载
预览

Estimating the head pose of a person is a crucial problem that has a large amount of applications such as aiding in gaze estimation, modeling attention, fitting 3D models to video and performing face alignment. Traditionally head pose is computed by estimating some keypoints from the target face and solving the 2D to 3D correspondence problem with a mean human head model. We argue that this is a fragile method because it relies entirely on landmark detection performance, the extraneous head model and an ad-hoc fitting step. We present an elegant and robust way to determine pose by training a multi-loss convolutional neural network on 300W-LP, a large synthetically expanded dataset, to predict intrinsic Euler angles (yaw, pitch and roll) directly from image intensities through joint binned pose classification and regression. We present empirical tests on common in-the-wild pose benchmark datasets which show state-of-the-art results. Additionally we test our method on a dataset usually used for pose estimation using depth and start to close the gap with state-of-the-art depth pose methods. We open-source our training and testing code as well as release our pre-trained models.

0
5
下载
预览

We propose a scalable, efficient and accurate approach to retrieve 3D models for objects in the wild. Our contribution is twofold. We first present a 3D pose estimation approach for object categories which significantly outperforms the state-of-the-art on Pascal3D+. Second, we use the estimated pose as a prior to retrieve 3D models which accurately represent the geometry of objects in RGB images. For this purpose, we render depth images from 3D models under our predicted pose and match learned image descriptors of RGB images against those of rendered depth images using a CNN-based multi-view metric learning approach. In this way, we are the first to report quantitative results for 3D model retrieval on Pascal3D+, where our method chooses the same models as human annotators for 50% of the validation images on average. In addition, we show that our method, which was trained purely on Pascal3D+, retrieves rich and accurate 3D models from ShapeNet given RGB images of objects in the wild.

0
7
下载
预览

In this paper, we propose a new long video dataset (called Track Long and Prosper - TLP) and benchmark for visual object tracking. The dataset consists of 50 videos from real world scenarios, encompassing a duration of over 400 minutes (676K frames), making it more than 20 folds larger in average duration per sequence and more than 8 folds larger in terms of total covered duration, as compared to existing generic datasets for visual tracking. The proposed dataset paves a way to suitably assess long term tracking performance and possibly train better deep learning architectures (avoiding/reducing augmentation, which may not reflect realistic real world behavior). We benchmark the dataset on 17 state of the art trackers and rank them according to tracking accuracy and run time speeds. We further categorize the test sequences with different attributes and present a thorough quantitative and qualitative evaluation. Our most interesting observations are (a) existing short sequence benchmarks fail to bring out the inherent differences in tracking algorithms which widen up while tracking on long sequences and (b) the accuracy of most trackers abruptly drops on challenging long sequences, suggesting the potential need of research efforts in the direction of long term tracking.

0
7
下载
预览

We introduce Spatial-Temporal Memory Networks (STMN) for video object detection. At its core, we propose a novel Spatial-Temporal Memory module (STMM) as the recurrent computation unit to model long-term temporal appearance and motion dynamics. The STMM's design enables the integration of ImageNet pre-trained backbone CNN weights for both the feature stack as well as the prediction head, which we find to be critical for accurate detection. Furthermore, in order to tackle object motion in videos, we propose a novel MatchTrans module to align the spatial-temporal memory from frame to frame. We compare our method to state-of-the-art detectors on ImageNet VID, and conduct ablative studies to dissect the contribution of our different design choices. We obtain state-of-the-art results with the VGG backbone, and competitive results with the ResNet backbone. To our knowledge, this is the first video object detector that is equipped with an explicit memory mechanism to model long-term temporal dynamics.

0
4
下载
预览
小贴士
相关论文
Simple Multi-Resolution Representation Learning for Human Pose Estimation
Trung Q. Tran,Giang V. Nguyen,Daeyoung Kim
5+阅读 · 2020年4月14日
DPOD: Dense 6D Pose Object Detector in RGB images
Sergey Zakharov,Ivan Shugurov,Slobodan Ilic
5+阅读 · 2019年2月28日
Joint Monocular 3D Vehicle Detection and Tracking
Hou-Ning Hu,Qi-Zhi Cai,Dequan Wang,Ji Lin,Min Sun,Philipp Krähenbühl,Trevor Darrell,Fisher Yu
8+阅读 · 2018年12月2日
Zheng Zhang,Dazhi Cheng,Xizhou Zhu,Stephen Lin,Jifeng Dai
3+阅读 · 2018年11月27日
Speeding-up Object Detection Training for Robotics with FALKON
Elisa Maiettini,Giulia Pasquale,Lorenzo Rosasco,Lorenzo Natale
6+阅读 · 2018年8月27日
Video Object Detection with an Aligned Spatial-Temporal Memory
Fanyi Xiao,Yong Jae Lee
3+阅读 · 2018年7月27日
Nataniel Ruiz,Eunji Chong,James M. Rehg
5+阅读 · 2018年4月13日
Alexander Grabner,Peter M. Roth,Vincent Lepetit
7+阅读 · 2018年3月30日
Abhinav Moudgil,Vineet Gandhi
7+阅读 · 2017年12月28日
Fanyi Xiao,Yong Jae Lee
4+阅读 · 2017年12月18日
相关VIP内容
专知会员服务
47+阅读 · 2020年5月16日
因果图,Causal Graphs,52页ppt
专知会员服务
152+阅读 · 2020年4月19日
TensorFlow 2.0 学习资源汇总
专知会员服务
46+阅读 · 2019年10月9日
Top