Unsupervised image-to-image translation methods such as CycleGAN learn to convert images from one domain to another using unpaired training data sets from different domains. Unfortunately, these approaches still require centrally collected unpaired records, potentially violating privacy and security issues. Although the recent federated learning (FL) allows a neural network to be trained without data exchange, the basic assumption of the FL is that all clients have their own training data from a similar domain, which is different from our image-to-image translation scenario in which each client has images from its unique domain and the goal is to learn image translation between different domains without accessing the target domain data. To address this, here we propose a novel federated CycleGAN architecture that can learn image translation in an unsupervised manner while maintaining the data privacy. Specifically, our approach arises from a novel observation that CycleGAN loss can be decomposed into the sum of client specific local objectives that can be evaluated using only their data. This local objective decomposition allows multiple clients to participate in federated CycleGAN training without sacrificing performance. Furthermore, our method employs novel switchable generator and discriminator architecture using Adaptive Instance Normalization (AdaIN) that significantly reduces the band-width requirement of the federated learning. Our experimental results on various unsupervised image translation tasks show that our federated CycleGAN provides comparable performance compared to the non-federated counterpart.


翻译:未经监督的图像到图像翻译方法, 如 CypeGAN 学会将图像从一个域转换成另一个域, 使用来自不同域的未受控制的培训数据集。 不幸的是, 这些方法仍然需要集中收集的未受控制的记录, 可能侵犯隐私和安全问题。 虽然最近的联邦学习( FL) 允许在没有数据交换的情况下培训神经网络, 但FL 的基本假设是, 所有客户都有来自类似域的自身培训数据, 这与我们图像到图像翻译的情景不同, 每个客户都有来自其独特域的图像, 目标是学习不同域之间的图像翻译, 而没有访问目标域域的数据。 为了解决这个问题, 我们在这里建议建立一个新型的FedereralGAN 结构, 能够在维护数据隐私的同时以不受监督的方式学习图像翻译。 具体地说, 我们的方法来自于一种新颖的观察, 即CyellGAN 损失可以分解成仅使用其数据来评估的客户特定本地目标的总和。 这个本地目标分解配置让多个客户在不牺牲性 Cyerated CycalGAN 培训绩效的情况下, 。 此外, 我们的方法使用可大幅转换的实验性 Greal- real- disaldal- disaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年6月12日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
带你读论文 | 生成对抗网络GAN论文TOP 10
微软研究院AI头条
24+阅读 · 2019年4月11日
必读!生成对抗网络GAN论文TOP 10
GAN生成式对抗网络
58+阅读 · 2019年3月20日
使用《Deep Image Prior》来做图像复原
AI研习社
7+阅读 · 2019年3月2日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
Arxiv
8+阅读 · 2018年5月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
带你读论文 | 生成对抗网络GAN论文TOP 10
微软研究院AI头条
24+阅读 · 2019年4月11日
必读!生成对抗网络GAN论文TOP 10
GAN生成式对抗网络
58+阅读 · 2019年3月20日
使用《Deep Image Prior》来做图像复原
AI研习社
7+阅读 · 2019年3月2日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员