This paper focuses on understanding how the generalization error scales with the amount of the training data for deep neural networks (DNNs). Existing techniques in statistical learning require computation of capacity measures, such as VC dimension, to provably bound this error. It is however unclear how to extend these measures to DNNs and therefore the existing analyses are applicable to simple neural networks, which are not used in practice, e.g., linear or shallow ones or otherwise multi-layer perceptrons. Moreover, many theoretical error bounds are not empirically verifiable. We derive estimates of the generalization error that hold for deep networks and do not rely on unattainable capacity measures. The enabling technique in our approach hinges on two major assumptions: i) the network achieves zero training error, ii) the probability of making an error on a test point is proportional to the distance between this point and its nearest training point in the feature space and at a certain maximal distance (that we call radius) it saturates. Based on these assumptions we estimate the generalization error of DNNs. The obtained estimate scales as O(1/(\delta N^{1/d})), where N is the size of the training data and is parameterized by two quantities, the effective dimensionality of the data as perceived by the network (d) and the aforementioned radius (\delta), both of which we find empirically. We show that our estimates match with the experimentally obtained behavior of the error on multiple learning tasks using benchmark data-sets and realistic models. Estimating training data requirements is essential for deployment of safety critical applications such as autonomous driving etc. Furthermore, collecting and annotating training data requires a huge amount of financial, computational and human resources. Our empirical estimates will help to efficiently allocate resources.


翻译:本文侧重于了解深神经网络(DNNs)培训数据数量的一般错误尺度。 统计学习的现有技术要求计算能力尺度, 如 VC 维度, 以可辨别地约束这一错误。 然而, 如何将这些措施扩大到 DNNs并因此现有分析适用于简单的神经网络, 而这些网络在实践中并未使用, 例如线性或浅性或多层次的透视。 此外, 许多理论错误界限无法以实证方式核查。 我们根据这些假设, 得出对深神经网络持有的通用错误的估计, 并且不依赖无法达到的估算能力尺度。 我们的方法中的赋能技术取决于两个主要假设 : i) 网络实现了零培训错误, ii 测试点上的错误概率与这个点与其在地貌空间的最近的训练点之间的距离成正比, 以及某种最大距离( 我们称之为半径) 。 基于这些假设, 我们估算了DNNNNNNS的通用错误。 以O 1/ (\ dedelal) imal imal drial drevelopal dreal dreal dal deal deal deal dealation the lavelop dreal deal deal deal deal deal deal deal deal dreal ex the the ex dreal deal deal deal das the dreal das the vial das the vial deal deal deal deal deal deal deal deal deal deal deal dreal deal deal deal deal deal deal deal deal deal deal deal deal deal d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d dald ex) ex) ex ex exald the the the the the the ex, ex, exal d d d d d d dald the the the the the the the the the the d d d d d d d d daldaldald ex ex ex the the the the the the the ex ex ex ex

0
下载
关闭预览

相关内容

专知会员服务
22+阅读 · 2021年6月22日
专知会员服务
50+阅读 · 2020年12月14日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
30+阅读 · 2020年4月15日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月29日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员