These notes were originally developed as lecture notes for a category theory course. They should be well-suited to anyone that wants to learn category theory from scratch and has a scientific mind. There is no need to know advanced mathematics, nor any of the disciplines where category theory is traditionally applied, such as algebraic geometry or theoretical computer science. The only knowledge that is assumed from the reader is linear algebra. All concepts are explained by giving concrete examples from different, non-specialized areas of mathematics (such as basic group theory, graph theory, and probability). Not every example is helpful for every reader, but hopefully every reader can find at least one helpful example per concept. The reader is encouraged to read all the examples, this way they may even learn something new about a different field. Particular emphasis is given to the Yoneda lemma and its significance, with both intuitive explanations, detailed proofs, and specific examples. Another common theme in these notes is the relationship between categories and directed multigraphs, which is treated in detail. From the applied point of view, this shows why categorical thinking can help whenever some process is taking place on a graph. From the pure math point of view, this can be seen as the 1-dimensional first step into the theory of simplicial sets. Finally, monads and comonads are treated on an equal footing, differently to most literature in which comonads are often overlooked as "just the dual to monads". Theorems, interpretations and concrete examples are given for monads as well as for comonads.
翻译:这些笔记最初是作为分类理论课程的讲座注释而开发的。 它们应该非常适合任何想要从头开始学习分类理论并具有科学思维的人。 不需要了解高级数学, 也不需要了解任何传统上使用分类理论的学科, 如代数几何或理论计算机科学。 读者唯一假定的知识是线性代数。 所有概念的解释都是通过提供不同、 非专业数学领域的具体例子( 如基本群数、 图形理论和概率) 来解释。 不是每个读者都有用, 但希望每个读者都能找到至少一个有用的每个概念的例子。 不需要了解高级数学, 也不需要了解任何传统上使用分类理论的学科, 如代数数学或理论理论理论。 这些笔记中的另一个常见主题是分类和定向多面图之间的关系, 详细处理。 从应用角度看, 直线式思维可以帮助每个读者找到至少每个概念都能找到一个有用的例子。 鼓励每个读者阅读所有的例子, 这样他们甚至可以学到一些关于不同领域的新东西, 比如, 从纯数学和数学的底部, 也可以作为数学的底部, 的底部, 。 从纯数学和数学的底部, 的底部, 的底部, 可以作为双部, 的底部,, 的底部,,, 直系, 直系, 直系, 直系, 直系, 直系, 直系的底部, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直为, 直系, 直为 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系, 直系,直系, 直系, 直系, 直系, 直系,