We present methods for co-designing rigid robots over control and morphology (including discrete topology) over multiple objectives. Previous work has addressed problems in single-objective robot co-design or multi-objective control. However, the joint multi-objective co-design problem is extremely important for generating capable, versatile, algorithmically designed robots. In this work, we present Multi-Objective Graph Heuristic Search, which extends a single-objective graph heuristic search from previous work to enable a highly efficient multi-objective search in a combinatorial design topology space. Core to this approach, we introduce a new universal, multi-objective heuristic function based on graph neural networks that is able to effectively leverage learned information between different task trade-offs. We demonstrate our approach on six combinations of seven terrestrial locomotion and design tasks, including one three-objective example. We compare the captured Pareto fronts across different methods and demonstrate that our multi-objective graph heuristic search quantitatively and qualitatively outperforms other techniques.
翻译:我们提出了对控制和形态学(包括离散地形学)进行共同设计以共同设计硬机器人的方法,对多个目标进行控制,对多个目标进行形态学(包括离散地形学),以往的工作解决了单目标机器人共同设计或多目标控制方面的问题,然而,联合多目标共同设计问题对于产生有能力的、多功能的、有逻辑设计的机器人极为重要。在这项工作中,我们提出了多目标图图象超导搜索,从以往的工作中扩展了单一目标图象超导搜索,以便能够在组合设计地形学空间进行高效的多目标搜索。这个方法的核心是,我们引入了以图形神经网络为基础的新的通用、多目标超目标功能,能够有效地利用不同任务交换之间所学到的信息。我们展示了我们在七种陆地移动和设计任务的六种组合上的做法,包括一个三个目标实例。我们比较了不同方法中捕获的Pareto战线,并展示了我们多目标图象超量和定性搜索的其他技术。