Space-time visualizations of macroscopic or microscopic traffic variables is a qualitative tool used by traffic engineers to understand and analyze different aspects of road traffic dynamics. We present a deep learning method to learn the macroscopic traffic speed dynamics from these space-time visualizations, and demonstrate its application in the framework of traffic state estimation. Compared to existing estimation approaches, our approach allows a finer estimation resolution, eliminates the dependence on the initial conditions, and is agnostic to external factors such as traffic demand, road inhomogeneities and driving behaviors. Our model respects causality in traffic dynamics, which improves the robustness of estimation. We present the high-resolution traffic speed fields estimated for several freeway sections using the data obtained from the Next Generation Simulation Program (NGSIM) and German Highway (HighD) datasets. We further demonstrate the quality and utility of the estimation by inferring vehicle trajectories from the estimated speed fields, and discuss the benefits of deep neural network models in approximating the traffic dynamics.
翻译:交通工程师为理解和分析道路交通动态的不同方面而使用的一种定性工具是交通工程师用来理解和分析这些交通动态的不同方面的一个定性工具。我们提出了一个深层次的学习方法,从这些时空可视化中学习大型交通速度动态,并展示其在交通状况估计框架内的应用。与现有的估算方法相比,我们的方法允许更细的估算解析,消除对初始条件的依赖,并且对交通需求、道路差异性和驾驶行为等外部因素具有不可知性。我们的模式尊重交通动态的因果关系,这提高了估算的稳健性。我们用下一代模拟方案和德国高速公路(高地)数据集提供若干高速公路段的高分辨率交通速度估计区。我们进一步通过从估计速度场推断车辆轨迹来展示估算的质量和效用,并讨论深度神经网络模型在控制交通动态方面的益处。