Far-right actors are often purveyors of Islamophobic hate speech online, using social media to spread divisive and prejudiced messages which can stir up intergroup tensions and conflict. Hateful content can inflict harm on targeted victims, create a sense of fear amongst communities and stir up intergroup tensions and conflict. Accordingly, there is a pressing need to better understand at a granular level how Islamophobia manifests online and who produces it. We investigate the dynamics of Islamophobia amongst followers of a prominent UK far right political party on Twitter, the British National Party. Analysing a new data set of five million tweets, collected over a period of one year, using a machine learning classifier and latent Markov modelling, we identify seven types of Islamophobic far right actors, capturing qualitative, quantitative and temporal differences in their behaviour. Notably, we show that a small number of users are responsible for most of the Islamophobia that we observe. We then discuss the policy implications of this typology in the context of social media regulation.
翻译:极右行为者往往是网上散布仇视伊斯兰教仇恨言论的人,他们利用社交媒体散布分裂和偏见信息,引发群体间紧张关系和冲突。仇恨内容会伤害目标受害者,在社区中制造恐惧感,激起群体间紧张关系和冲突。因此,迫切需要在粒子层面更好地了解仇视伊斯兰教在网上的表现方式以及谁在网上制造仇视伊斯兰教。我们调查了一个著名的英国极右政党英国政党英国民族党的追随者之间的仇视伊斯兰教动态。分析在一年时间内收集的500万条新数据集,利用机器学习分类器和潜伏的Markov模型,我们确定七类仇视伊斯兰教的极右行为者,捕捉到其行为的质量、数量和时间差异。值得注意的是,我们表明少数用户应对我们所观察到的大部分仇视伊斯兰教行为负责。我们随后在社会媒体监管方面讨论这种类型所涉政策问题。