We introduce a new algorithm to efficiently compute the functions belonging to a suitable set $\mathcal F$ defined as follows: $f\in \mathcal F$ means that $f(s,x)$, $s\in A\subset \mathbb R$ being fixed and $x>0$, has a power series expansion centred at $x_0=1$ with convergence radius greater or equal than $1$; moreover, it satisfies a difference equation of step $1$ and the Euler-Maclaurin summation formula can be applied to $f$. Denoting Euler's function as $\Gamma$, we will show, for $x>0$, that $\log \Gamma(x)$, the digamma function $\psi(x)$, the polygamma functions $\psi^{(w)}(x)$, $w\in \mathbb N$, $w\ge1$, and, for $s>1$ being fixed, the Hurwitz $\zeta(s,x)$-function and its first partial derivative $\frac{\partial\zeta}{\partial s}(s,x)$ are in $\mathcal F$. In all these cases the power series involved will depend on the values of $\zeta(u)$, $u>1$, where $\zeta$ is Riemann's function. As a by-product, we will also show how compute efficiently the Dirichlet $L$-functions $L(s,\chi)$ and $L^\prime(s,\chi)$, $s>1$, $\chi$ being a primitive Dirichlet character, by inserting the reflection formulae of $\zeta(s,x)$ and $\frac{\partial\zeta}{\partial s}(s,x)$ into the first step of the Fast Fourier Transform algorithm. Moreover, we will obtain some new formulae and algorithms for the Dirichlet $\beta$-function and for the Catalan constant $G$. Finally, we will study the case of the Bateman $G$-function. In the last section we will also describe some tests that show an important performance gain with respect to a standard multiprecision implementation of $\zeta(s,x)$ and $\frac{\partial\zeta}{\partial s}(s,x)$, $s>1$, $x>0$.
翻译:我们引入一个新的算法, 以有效计算属于合适的一套 $\ mathcal F$ 的函数, 定义如下: $f\ in\ mathcal F$, 表示美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 以美元, 以美元, 美元, 以美元, 以美元, 以美元, 美元, 以美元, 以美元, 以美元, 美元, 以美元, 以美元, 以美元, 美元, 以美元, 以美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 以, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元,