We study a multiclass multiple instance learning (MIL) problem where the labels only suggest whether any instance of a class exists or does not exist in a training sample or example. No further information, e.g., the number of instances of each class, relative locations or orders of all instances in a training sample, is exploited. Such a weak supervision learning problem can be exactly solved by maximizing the model likelihood fitting given observations, and finds applications to tasks like multiple object detection and localization for image understanding. We discuss its relationship to the classic classification problem, the traditional MIL, and connectionist temporal classification (CTC). We use image recognition as the example task to develop our method, although it is applicable to data with higher or lower dimensions without much modification. Experimental results show that our method can be used to learn all convolutional neural networks for solving real-world multiple object detection and localization tasks with weak annotations, e.g., transcribing house number sequences from the Google street view imagery dataset.

0+
下载
关闭预览

相关内容

目标检测,也叫目标提取,是一种基于目标几何和统计特征的图像分割,它将目标的分割和识别合二为一,其准确性和实时性是整个系统的一项重要能力。尤其是在复杂场景中,需要对多个目标进行实时处理时,目标自动提取和识别就显得特别重要。 随着计算机技术的发展和计算机视觉原理的广泛应用,利用计算机图像处理技术对目标进行实时跟踪研究越来越热门,对目标进行动态实时跟踪定位在智能化交通系统、智能监控系统、军事目标检测及医学导航手术中手术器械定位等方面具有广泛的应用价值。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Top