Neural volumetric representations such as Neural Radiance Fields (NeRF) have emerged as a compelling technique for learning to represent 3D scenes from images with the goal of rendering photorealistic images of the scene from unobserved viewpoints. However, NeRF's computational requirements are prohibitive for real-time applications: rendering views from a trained NeRF requires querying a multilayer perceptron (MLP) hundreds of times per ray. We present a method to train a NeRF, then precompute and store (i.e. "bake") it as a novel representation called a Sparse Neural Radiance Grid (SNeRG) that enables real-time rendering on commodity hardware. To achieve this, we introduce 1) a reformulation of NeRF's architecture, and 2) a sparse voxel grid representation with learned feature vectors. The resulting scene representation retains NeRF's ability to render fine geometric details and view-dependent appearance, is compact (averaging less than 90 MB per scene), and can be rendered in real-time (higher than 30 frames per second on a laptop GPU). Actual screen captures are shown in our video.
翻译:神经半径场(NERF)等神经体积表现作为学习从图像中代表三维场景的一种令人信服的技术,目的是从未观测到的角度拍摄现场的摄影现实图像。然而,NERF的计算要求对于实时应用来说是无法做到的:从受过训练的NERF中表达观点需要每个射线询问多层感应器(MLP)数百次。我们提出了一个培训NERF的方法,然后预先计算和储存(即“bake”),作为名为“Sparse神经半径网(SneRG)”的新型代表,以便实时展示商品硬件。为了实现这一点,我们引入了1)NERF结构的重新组合,2)一个带有有学习特性矢量的稀疏的对氧化物格代表。由此形成的场面代表保留了NERF提供精细的几何细节和视貌外貌的能力,是紧凑的(每场景距离不到90MB),可以实时进行(在膝上显示(在膝上每秒30米特的高度)。