Often adaptive, distributed control can be viewed as an iterated game between independent players. The coupling between the players' mixed strategies, arising as the system evolves from one instant to the next, is determined by the system designer. Information theory tells us that the most likely joint strategy of the players, given a value of the expectation of the overall control objective function, is the minimizer of a Lagrangian function of the joint strategy. So the goal of the system designer is to speed evolution of the joint strategy to that Lagrangian minimizing point, lower the expectated value of the control objective function, and repeat. Here we elaborate the theory of algorithms that do this using local descent procedures, and that thereby achieve efficient, adaptive, distributed control.
翻译:通常适应性、 分布式控制可以被视为独立玩家之间循环的游戏。 当系统从一瞬间发展到下一瞬间时, 玩家混合战略的结合由系统设计师决定。 信息理论告诉我们, 最有可能的玩家联合战略, 与总体控制目标功能的预期值相比, 最有可能是将联合战略的Lagrangian函数最小化。 因此系统设计者的目标是加速联合战略的演进, 达到拉格朗日最小化点, 降低控制目标功能的预期值, 重复。 我们在这里详细阐述了使用本地血统程序进行计算, 从而实现高效、 适应性、 分布式控制的算法理论 。