This paper integrates non-orthogonal multiple access (NOMA) and over-the-air federated learning (AirFL) into a unified framework using a simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS). The STAR-RIS plays an important role in adjusting the decoding order of hybrid users for efficient interference mitigation and omni-directional coverage extension. To capture the impact of non-ideal wireless channels on AirFL, a closed-form expression for the optimality gap (a.k.a. convergence upper bound) between the actual loss and the optimal loss is derived. This analysis reveals that the learning performance is significantly affected by active and passive beamforming schemes as well as wireless noise. Furthermore, when the learning rate diminishes as the training proceeds, the optimality gap is explicitly characterized to converge with a linear rate. To accelerate convergence while satisfying QoS requirements, a mixed-integer non-linear programming (MINLP) problem is formulated by jointly designing the transmit power at users and the configuration mode of STAR-RIS. Next, a trust region-based successive convex approximation method and a penalty-based semidefinite relaxation approach is proposed to handle the decoupled non-convex subproblems iteratively. An alternating optimization algorithm is then developed to find a suboptimal solution for the original MINLP problem. Extensive simulation results show that i) the proposed framework can efficiently support NOMA and AirFL users via concurrent uplink communications, ii) our algorithms can achieve a faster convergence rate on the IID and non-IID settings as compared to baselines, and iii) both the spectrum efficiency and learning performance can be significantly improved with the aid of the well-tuned STAR-RIS.


翻译:本文将非垂直多存( NOMA) 和超空联运学习( AirFL) 整合为一个统一框架, 使用同步传输和反映可重新配置智能表面( STAR- RIS) 。 STAR- RIS 在调整混合用户解码顺序以有效减少干扰和全向覆盖扩展方面发挥着重要作用。 要捕捉非理想无线频道对AirFLL的影响, 将实际损失和最佳损失( a.k.a. 上界连接) 之间的最佳化差距( a.k.a. 趋同上连接) 的封闭式表达式表达式表达方式。 此分析显示, 学习业绩表现受到动态和被动的智能化计划以及无线性噪音的影响。 此外, 当学习速度随着培训的不断下降时, 最佳化差距明显地与线性拉动一致。 在满足QOSL的要求的同时, 一个混合的非线性内程序( MINLP) 问题可以通过联合设计用户的传输力和基于STAR- IS 的配置模式来得出。 接下来, 一个基于信任的IMFAL- IML 升级的IML 的SAL- 递化的递化的递升平流法将S- 的递化的递化的递化的递化的递化的递升法将显示为一个双向的递化平流法, 的递化的递化的递化的递化的递化平压法, 显示的递化的递化的递升法, 和制的递化的递化的递化的递化的递化的递化的递进法则显示的递化的递化的递化的递化的递化的递化的递化的递化法 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
30+阅读 · 2020年4月15日
专知会员服务
59+阅读 · 2020年3月19日
【阿里巴巴】 AI编译器,AI Compiler @ Alibaba,21页ppt
专知会员服务
43+阅读 · 2019年12月22日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【推荐】基于TVM工具链的深度学习编译器 NNVM compiler发布
机器学习研究会
5+阅读 · 2017年10月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月18日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【推荐】基于TVM工具链的深度学习编译器 NNVM compiler发布
机器学习研究会
5+阅读 · 2017年10月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员