The basic framework of depth completion is to predict a pixel-wise dense depth map using very sparse input data. In this paper, we try to solve this problem in a more effective way, by reformulating the regression-based depth estimation problem into a combination of depth plane classification and residual regression. Our proposed approach is to initially densify sparse depth information by figuring out which plane a pixel should lie among a number of discretized depth planes, and then calculate the final depth value by predicting the distance from the specified plane. This will help the network to lessen the burden of directly regressing the absolute depth information from none, and to effectively obtain more accurate depth prediction result with less computation power and inference time. To do so, we firstly introduce a novel way of interpreting depth information with the closest depth plane label $p$ and a residual value $r$, as we call it, Plane-Residual (PR) representation. We also propose a depth completion network utilizing PR representation consisting of a shared encoder and two decoders, where one classifies the pixel's depth plane label, while the other one regresses the normalized distance from the classified depth plane. By interpreting depth information in PR representation and using our corresponding depth completion network, we were able to acquire improved depth completion performance with faster computation, compared to previous approaches.


翻译:深度完成的基本框架是使用非常稀少的投入数据预测一个像素密密密密密的深度地图。 在本文中, 我们试图以更有效的方式解决这个问题, 将基于回归的深度估计问题重新纳入深度平面分类和残余回归的组合。 我们建议的方法是首先将稀有的深度信息压缩, 找出哪些平面应该位于一些离散的深度平面之间, 然后通过预测与指定平面的距离来计算最后深度值。 这将有助于网络减轻直接从零层直接反射绝对深度信息的负担, 并有效地获得更准确的深度预测结果, 减少计算能力和推断时间。 为了做到这一点, 我们首先采用了一种新的方式, 解释深度最接近的平面标签 $ p$ 和剩余值 $ 。 我们还建议利用一个深度完成网络, 包括一个共享的编码器和两个解码, 从而将平面的深度标签分解, 从而有效地获得更准确的深度预测结果, 减少计算能力和推断时间。 为了做到这一点, 我们首先引入一种新的方式来解释深度信息, 用最接近的深度平面平面的深度的深度计算方法, 来比较我们以前的完成的深度平面的深度的深度分析, 和深度的深度的深度的深度分析, 和深度分析, 比较我们的深度的深度的深度分析, 和深度的深度的深度分析, 与深度分析, 与深度的深度的深度分析, 与深度的深度分析, 和深度分析, 我们的深度分析, 与深度的深度分析, 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
自回归模型:PixelCNN
专知会员服务
27+阅读 · 2020年3月21日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Pluralistic Image Completion
Arxiv
8+阅读 · 2019年3月11日
VIP会员
相关VIP内容
自回归模型:PixelCNN
专知会员服务
27+阅读 · 2020年3月21日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员