Discrete integration in a high dimensional space of $n$ variables poses fundamental challenges. The WISH algorithm reduces the intractable discrete integration problem into $n$ optimization queries subject to randomized constraints, obtaining a constant approximation guarantee. The optimization queries are expensive, which limits the applicability of WISH. We propose AdaWISH, which is able to obtain the same guarantee, but accesses only a small subset of queries of WISH. For example, when the number of function values is bounded by a constant, AdaWISH issues only $O(\log n)$ queries. The key idea is to query adaptively, taking advantage of the shape of the weight function. In general, we prove that AdaWISH has a regret of no more than $O(\log n)$ relative to an oracle that issues queries at data-dependent optimal points. Experimentally, AdaWISH gives precise estimates for discrete integration problems, of the same quality as that of WISH and better than several competing approaches, on a variety of probabilistic inference benchmarks, while saving substantially on the number of optimization queries compared to WISH. For example, it saves $81.5\%$ of WISH queries while retaining the quality of results on a suite of UAI inference challenge benchmarks.


翻译:在高维空间内,以美元计算变量的分解整合构成了根本性挑战。WISH算法将棘手的离散整合问题降低到受随机限制的以美元为单位的优化查询中,并获得固定的近似保证。优化查询费用昂贵,限制了WISH的适用性。我们建议AdaWISIS, 它可以获得同样的保证,但只能获得WISH的一小部分查询。例如,当功能值数量受一个恒定的AdaWISH问题约束时,AdaWISH只提出O(log n)美元查询。关键的想法是适应性查询,利用重量功能的形状。总的来说,我们证明AdaWISHA对于在依赖数据的最佳点上提出查询的甲骨牌只遗憾不到O(log n)美元。我们实验性地说,AdaWISH对离散整合问题作了精确估计,其质量与WISH问题相同,比若干相互竞争的方法要好。关键的观点是,同时在与WISISA质量查询结果的标尺上节省了大量的精度查询次数。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
7+阅读 · 2018年2月26日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员