In this work, we take a closer look at the evaluation of two families of methods for enriching information from knowledge graphs: Link Prediction and Entity Alignment. In the current experimental setting, multiple different scores are employed to assess different aspects of model performance. We analyze the informativeness of these evaluation measures and identify several shortcomings. In particular, we demonstrate that all existing scores can hardly be used to compare results across different datasets. Moreover, we demonstrate that varying size of the test size automatically has impact on the performance of the same model based on commonly used metrics for the Entity Alignment task. We show that this leads to various problems in the interpretation of results, which may support misleading conclusions. Therefore, we propose adjustments to the evaluation and demonstrate empirically how this supports a fair, comparable, and interpretable assessment of model performance. Our code is available at https://github.com/mberr/rank-based-evaluation.

0
下载
关闭预览

相关内容

实体对齐(Entity Alignment)也被称作实体匹配(Entity Matching),是指对于异构数据源知识库中的各个实体,找出属于现实世界中的同一实体。 实体对齐常用的方法是利用实体的属性信息判定不同源实体是否可进行对齐。

The multiplayer online battle arena (MOBA) games have become increasingly popular in recent years. Consequently, many efforts have been devoted to providing pre-game or in-game predictions for them. However, these works are limited in the following two aspects: 1) the lack of sufficient in-game features; 2) the absence of interpretability in the prediction results. These two limitations greatly restrict the practical performance and industrial application of the current works. In this work, we collect and release a large-scale dataset containing rich in-game features for the popular MOBA game Honor of Kings. We then propose to predict four types of important events in an interpretable way by attributing the predictions to the input features using two gradient-based attribution methods: Integrated Gradients and SmoothGrad. To evaluate the explanatory power of different models and attribution methods, a fidelity-based evaluation metric is further proposed. Finally, we evaluate the accuracy and Fidelity of several competitive methods on the collected dataset to assess how well machines predict events in MOBA games.

0
0
下载
预览

It is common practice of the outlier mining community to repurpose classification datasets toward evaluating various detection models. To that end, often a binary classification dataset is used, where samples from (typically, the larger) one of the classes is designated as the inlier samples, and the other class is substantially down-sampled to create the (ground-truth) outlier samples. In this study, we identify an intriguing issue with repurposing graph classification datasets for graph outlier detection in this manner. Surprisingly, the detection performance of outlier models depends significantly on which class is down-sampled; put differently, accuracy often flips from high to low depending on which of the classes is down-sampled to represent the outlier samples. The problem is notably exacerbated particularly for a certain family of propagation based outlier detection models. Through careful analysis, we show that this issue mainly stems from disparate within-class sample similarity - which is amplified by various propagation based models - that impacts key characteristics of inlier/outlier distributions and indirectly, the difficulty of the outlier detection task and hence performance outcomes. With this study, we aim to draw attention to this (to our knowledge) previously-unnoticed issue, as it has implications for fair and effective evaluation of detection models, and hope that it will motivate the design of better evaluation benchmarks for outlier detection. Finally, we discuss the possibly overarching implications of using propagation based models on datasets with disparate within-class sample similarity beyond outlier detection, specifically for graph classification and graph-level clustering tasks.

0
0
下载
预览

Knowledge graphs (KGs) of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge graphs are typically incomplete, it is useful to perform knowledge graph completion or link prediction, i.e. predict whether a relationship not in the knowledge graph is likely to be true. This paper serves as a comprehensive survey of embedding models of entities and relationships for knowledge graph completion, summarizing up-to-date experimental results on standard benchmark datasets and pointing out potential future research directions.

0
13
下载
预览

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.

0
20
下载
预览

Entity alignment is a viable means for integrating heterogeneous knowledge among different knowledge graphs (KGs). Recent developments in the field often take an embedding-based approach to model the structural information of KGs so that entity alignment can be easily performed in the embedding space. However, most existing works do not explicitly utilize useful relation representations to assist in entity alignment, which, as we will show in the paper, is a simple yet effective way for improving entity alignment. This paper presents a novel joint learning framework for entity alignment. At the core of our approach is a Graph Convolutional Network (GCN) based framework for learning both entity and relation representations. Rather than relying on pre-aligned relation seeds to learn relation representations, we first approximate them using entity embeddings learned by the GCN. We then incorporate the relation approximation into entities to iteratively learn better representations for both. Experiments performed on three real-world cross-lingual datasets show that our approach substantially outperforms state-of-the-art entity alignment methods.

0
3
下载
预览

We study the problem of embedding-based entity alignment between knowledge graphs (KGs). Previous works mainly focus on the relational structure of entities. Some further incorporate another type of features, such as attributes, for refinement. However, a vast of entity features are still unexplored or not equally treated together, which impairs the accuracy and robustness of embedding-based entity alignment. In this paper, we propose a novel framework that unifies multiple views of entities to learn embeddings for entity alignment. Specifically, we embed entities based on the views of entity names, relations and attributes, with several combination strategies. Furthermore, we design some cross-KG inference methods to enhance the alignment between two KGs. Our experiments on real-world datasets show that the proposed framework significantly outperforms the state-of-the-art embedding-based entity alignment methods. The selected views, cross-KG inference and combination strategies all contribute to the performance improvement.

0
29
下载
预览

In this paper, we propose an improved quantitative evaluation framework for Generative Adversarial Networks (GANs) on generating domain-specific images, where we improve conventional evaluation methods on two levels: the feature representation and the evaluation metric. Unlike most existing evaluation frameworks which transfer the representation of ImageNet inception model to map images onto the feature space, our framework uses a specialized encoder to acquire fine-grained domain-specific representation. Moreover, for datasets with multiple classes, we propose Class-Aware Frechet Distance (CAFD), which employs a Gaussian mixture model on the feature space to better fit the multi-manifold feature distribution. Experiments and analysis on both the feature level and the image level were conducted to demonstrate improvements of our proposed framework over the recently proposed state-of-the-art FID method. To our best knowledge, we are the first to provide counter examples where FID gives inconsistent results with human judgments. It is shown in the experiments that our framework is able to overcome the shortness of FID and improves robustness. Code will be made available.

0
3
下载
预览

Traditional methods for link prediction can be categorized into three main types: graph structure feature-based, latent feature-based, and explicit feature-based. Graph structure feature methods leverage some handcrafted node proximity scores, e.g., common neighbors, to estimate the likelihood of links. Latent feature methods rely on factorizing networks' matrix representations to learn an embedding for each node. Explicit feature methods train a machine learning model on two nodes' explicit attributes. Each of the three types of methods has its unique merits. In this paper, we propose SEAL (learning from Subgraphs, Embeddings, and Attributes for Link prediction), a new framework for link prediction which combines the power of all the three types into a single graph neural network (GNN). GNN is a new type of neural network which directly accepts graphs as input and outputs their labels. In SEAL, the input to the GNN is a local subgraph around each target link. We prove theoretically that our local subgraphs also reserve a great deal of high-order graph structure features related to link existence. Another key feature is that our GNN can naturally incorporate latent features and explicit features. It is achieved by concatenating node embeddings (latent features) and node attributes (explicit features) in the node information matrix for each subgraph, thus combining the three types of features to enhance GNN learning. Through extensive experiments, SEAL shows unprecedentedly strong performance against a wide range of baseline methods, including various link prediction heuristics and network embedding methods.

0
22
下载
预览

Networks provide a powerful formalism for modeling complex systems, by representing the underlying set of pairwise interactions. But much of the structure within these systems involves interactions that take place among more than two nodes at once; for example, communication within a group rather than person-to-person, collaboration among a team rather than a pair of co-authors, or biological interaction between a set of molecules rather than just two. We refer to these type of simultaneous interactions on sets of more than two nodes as higher-order interactions; they are ubiquitous, but the empirical study of them has lacked a general framework for evaluating higher-order models. Here we introduce such a framework, based on link prediction, a fundamental problem in network analysis. The traditional link prediction problem seeks to predict the appearance of new links in a network, and here we adapt it to predict which (larger) sets of elements will have future interactions. We study the temporal evolution of 19 datasets from a variety of domains, and use our higher-order formulation of link prediction to assess the types of structural features that are most predictive of new multi-way interactions. Among our results, we find that different domains vary considerably in their distribution of higher-order structural parameters, and that the higher-order link prediction problem exhibits some fundamental differences from traditional pairwise link prediction, with a greater role for local rather than long-range information in predicting the appearance of new interactions.

0
3
下载
预览

We report an evaluation of the effectiveness of the existing knowledge base embedding models for relation prediction and for relation extraction on a wide range of benchmarks. We also describe a new benchmark, which is much larger and complex than previous ones, which we introduce to help validate the effectiveness of both tasks. The results demonstrate that knowledge base embedding models are generally effective for relation prediction but unable to give improvements for the state-of-art neural relation extraction model with the existing strategies, while pointing limitations of existing methods.

0
8
下载
预览
小贴士
相关论文
Predicting Events in MOBA Games: Dataset, Attribution, and Evaluation
Zelong Yang,Yan Wang,Piji Li,Shaobin Lin,Shuming Shi,Shao-Lun Huang
0+阅读 · 2020年12月24日
Hongwei Wang,Hongyu Ren,Jure Leskovec
20+阅读 · 2020年2月17日
Yuting Wu,Xiao Liu,Yansong Feng,Zheng Wang,Dongyan Zhao
3+阅读 · 2019年9月20日
Qingheng Zhang,Zequn Sun,Wei Hu,Muhao Chen,Lingbing Guo,Yuzhong Qu
29+阅读 · 2019年6月6日
Shaohui Liu,Yi Wei,Jiwen Lu,Jie Zhou
3+阅读 · 2018年3月27日
Muhan Zhang,Yixin Chen
22+阅读 · 2018年2月27日
Austin R. Benson,Rediet Abebe,Michael T. Schaub,Ali Jadbabaie,Jon Kleinberg
3+阅读 · 2018年2月20日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
6+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
6+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
26+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
6+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
20+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
3+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年4月10日
计算机视觉近一年进展综述
机器学习研究会
6+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
5+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
3+阅读 · 2017年8月6日
Top