Multi-armed Bandit (MAB) algorithms identify the best arm among multiple arms via exploration-exploitation trade-off without prior knowledge of arm statistics. Their usefulness in wireless radio, IoT, and robotics demand deployment on edge devices, and hence, a mapping on system-on-chip (SoC) is desired. Theoretically, the Bayesian approach-based Thompson Sampling (TS) algorithm offers better performance than the frequentist approach-based Upper Confidence Bound (UCB) algorithm. However, TS is not synthesizable due to Beta function. We address this problem by approximating it via a pseudo-random number generator-based approach and efficiently realize the TS algorithm on Zynq SoC. In practice, the type of arms distribution (e.g., Bernoulli, Gaussian, etc.) is unknown and hence, a single algorithm may not be optimal. We propose a reconfigurable and intelligent MAB (RI-MAB) framework. Here, intelligence enables the identification of appropriate MAB algorithms for a given environment, and reconfigurability allows on-the-fly switching between algorithms on the SoC. This eliminates the need for parallel implementation of algorithms resulting in huge savings in resources and power consumption. We analyze the functional correctness, area, power, and execution time of the proposed and existing architectures for various arm distributions, word-length, and hardware-software co-design approaches. We demonstrate the superiority of the RI-MAB over TS and UCB only architectures.


翻译:多武装土匪(MAB)算法通过勘探-开发交易确定多种武器中的最佳臂膀,而没有事先了解武装统计。 它们在无线无线电、 IOT 和机器人上需要边缘装置的部署,因此,希望对系统芯片(SOC)进行绘图。 从理论上讲,以巴伊西亚方法为基础的汤普森抽样算法比以常客方法为基础的高信任调(UB)算法(UBB)算法(TS)的性能更好。 但是,由于Beta 功能,TS无法同步。 我们通过假随机数字发电机法来接近这一问题,并有效地实现Zynq SoC的TS算法。 在实践中,武器分配的类型(例如Bernoulli、Gaussian等)并不为人所知,因此,单一算法可能不是最佳的。 我们提议了一个可调整和智能的MAB(RI-MAB)框架。 在这里,通过情报可以辨别出给给特定环境的MAL算法,以假随机数字为基础,并有效地在Zynq Soq Soq Soq Soq Socalalalalalal-assalals 上改变了目前消费结构。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息10条
Call4Papers
7+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
7+阅读 · 2018年12月26日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息10条
Call4Papers
7+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员