Controlled capture of real-world material appearance yields tabulated sets of highly realistic reflectance data. In practice, however, its high memory footprint requires compressing into a representation that can be used efficiently in rendering while remaining faithful to the original. Previous works in appearance encoding often prioritised one of these requirements at the expense of the other, by either applying high-fidelity array compression strategies not suited for efficient queries during rendering, or by fitting a compact analytic model that lacks expressiveness. We present a compact neural network-based representation of BRDF data that combines high-accuracy reconstruction with efficient practical rendering via built-in interpolation of reflectance. We encode BRDFs as lightweight networks, and propose a training scheme with adaptive angular sampling, critical for the accurate reconstruction of specular highlights. Additionally, we propose a novel approach to make our representation amenable to importance sampling: rather than inverting the trained networks, we learn an embedding that can be mapped to parameters of an analytic BRDF for which importance sampling is known. We evaluate encoding results on isotropic and anisotropic BRDFs from multiple real-world datasets, and importance sampling performance for isotropic BRDFs mapped to two different analytic models.


翻译:然而,在实践中,高的记忆足迹需要压缩成一个能够有效用于使原始数据保持忠实于原始数据的表达面。 先前的外观编码常常以牺牲另一种要求为代价,将其中一项要求排在优先位置上。 我们建议采用一种新颖的方法,使我们的外观代表面能用于重要的取样:我们学习一种嵌入方式,可以用来测量具有重要性的解析型BRDF的参数,而不是用来颠倒经过训练的网络;我们学习一种嵌入方式,可以用来测量具有重要意义的解析型BRDF的参数。我们将BDF系统编码为轻量级网络,并提议一个具有适应性角取样的培训计划,这对于准确重建光度亮点至关重要。此外,我们提出一种新颖的方法,使我们的代表面能够适应重要的取样,而不是颠倒经训练的网络。我们学习一种嵌入,可以用来测量具有重要性的解析型BRDF系统的参数。我们评估了异式和异式BRPRODF系统的编码结果,一种来自不同真实世界的BR-DF系统,一种不同的数据模型和BRPS-DFS-DFS的模型是不同的。

0
下载
关闭预览

相关内容

专知会员服务
75+阅读 · 2020年9月1日
专知会员服务
61+阅读 · 2020年3月19日
专知会员服务
110+阅读 · 2020年3月12日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
27+阅读 · 2020年6月19日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Neural Module Networks for Reasoning over Text
Arxiv
9+阅读 · 2019年12月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员