Over the past decade, knowledge graphs became popular for capturing structured domain knowledge. Relational learning models enable the prediction of missing links inside knowledge graphs. More specifically, latent distance approaches model the relationships among entities via a distance between latent representations. Translating embedding models (e.g., TransE) are among the most popular latent distance approaches which use one distance function to learn multiple relation patterns. However, they are not capable of capturing symmetric relations. They also force relations with reflexive patterns to become symmetric and transitive. In order to improve distance based embedding, we propose multi-distance embeddings (MDE). Our solution is based on the idea that by learning independent embedding vectors for each entity and relation one can aggregate contrasting distance functions. Benefiting from MDE, we also develop supplementary distances resolving the above-mentioned limitations of TransE. We further propose an extended loss function for distance based embeddings and show that MDE and TransE are fully expressive using this loss function. Furthermore, we obtain a bound on the size of their embeddings for full expressivity. Our empirical results show that MDE significantly improves the translating embeddings and outperforms several state-of-the-art embedding models on benchmark datasets.

4
下载
关闭预览

相关内容

TransE: 多元关系数据嵌入(Translation embeddings for modeling multi-relation data),知识表示的一种算法。

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

0
15
下载
预览

Learning embeddings of entities and relations existing in knowledge bases allows the discovery of hidden patterns in data. In this work, we examine the geometrical space's contribution to the task of knowledge base completion. We focus on the family of translational models, whose performance has been lagging, and propose a model, dubbed HyperKG, which exploits the hyperbolic space in order to better reflect the topological properties of knowledge bases. We investigate the type of regularities that our model can capture and we show that it is a prominent candidate for effectively representing a subset of Datalog rules. We empirically show, using a variety of link prediction datasets, that hyperbolic space allows to narrow down significantly the performance gap between translational and bilinear models.

0
4
下载
预览

The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.

0
34
下载
预览

Knowledge graph embedding aims to learn distributed representations for entities and relations, and is proven to be effective in many applications. Crossover interactions --- bi-directional effects between entities and relations --- help select related information when predicting a new triple, but haven't been formally discussed before. In this paper, we propose CrossE, a novel knowledge graph embedding which explicitly simulates crossover interactions. It not only learns one general embedding for each entity and relation as most previous methods do, but also generates multiple triple specific embeddings for both of them, named interaction embeddings. We evaluate embeddings on typical link prediction tasks and find that CrossE achieves state-of-the-art results on complex and more challenging datasets. Furthermore, we evaluate embeddings from a new perspective --- giving explanations for predicted triples, which is important for real applications. In this work, an explanation for a triple is regarded as a reliable closed-path between the head and the tail entity. Compared to other baselines, we show experimentally that CrossE, benefiting from interaction embeddings, is more capable of generating reliable explanations to support its predictions.

0
6
下载
预览

We study the problem of learning representations of entities and relations in knowledge graphs for predicting missing links. The success of such a task heavily relies on the ability of modeling and inferring the patterns of (or between) the relations. In this paper, we present a new approach for knowledge graph embedding called RotatE, which is able to model and infer various relation patterns including: symmetry/antisymmetry, inversion, and composition. Specifically, the RotatE model defines each relation as a rotation from the source entity to the target entity in the complex vector space. In addition, we propose a novel self-adversarial negative sampling technique for efficiently and effectively training the RotatE model. Experimental results on multiple benchmark knowledge graphs show that the proposed RotatE model is not only scalable, but also able to infer and model various relation patterns and significantly outperform existing state-of-the-art models for link prediction.

0
8
下载
预览

We introduce a new method DOLORES for learning knowledge graph embeddings that effectively captures contextual cues and dependencies among entities and relations. First, we note that short paths on knowledge graphs comprising of chains of entities and relations can encode valuable information regarding their contextual usage. We operationalize this notion by representing knowledge graphs not as a collection of triples but as a collection of entity-relation chains, and learn embeddings for entities and relations using deep neural models that capture such contextual usage. In particular, our model is based on Bi-Directional LSTMs and learn deep representations of entities and relations from constructed entity-relation chains. We show that these representations can very easily be incorporated into existing models to significantly advance the state of the art on several knowledge graph prediction tasks like link prediction, triple classification, and missing relation type prediction (in some cases by at least 9.5%).

0
5
下载
预览

Knowledge graphs are large graph-structured databases of facts, which typically suffer from incompleteness. Link prediction is the task of inferring missing relations (links) between entities (nodes) in a knowledge graph. We approach this task using a hypernetwork architecture to generate convolutional layer filters specific to each relation and apply those filters to the subject entity embeddings. This architecture enables a trade-off between non-linear expressiveness and the number of parameters to learn. Our model simplifies the entity and relation embedding interactions introduced by the predecessor convolutional model, while outperforming all previous approaches to link prediction across all standard link prediction datasets.

0
8
下载
预览

Knowledge Graph Embedding methods aim at representing entities and relations in a knowledge base as points or vectors in a continuous vector space. Several approaches using embeddings have shown promising results on tasks such as link prediction, entity recommendation, question answering, and triplet classification. However, only a few methods can compute low-dimensional embeddings of very large knowledge bases. In this paper, we propose KG2Vec, a novel approach to Knowledge Graph Embedding based on the skip-gram model. Instead of using a predefined scoring function, we learn it relying on Long Short-Term Memories. We evaluated the goodness of our embeddings on knowledge graph completion and show that KG2Vec is comparable to the quality of the scalable state-of-the-art approaches and can process large graphs by parsing more than a hundred million triples in less than 6 hours on common hardware.

0
7
下载
预览

The aim of knowledge graphs is to gather knowledge about the world and provide a structured representation of this knowledge. Current knowledge graphs are far from complete. To address the incompleteness of the knowledge graphs, link prediction approaches have been developed which make probabilistic predictions about new links in a knowledge graph given the existing links. Tensor factorization approaches have proven promising for such link prediction problems. In this paper, we develop a simple tensor factorization model called SimplE, through a slight modification of the Polyadic Decomposition model from 1927. The complexity of SimplE grows linearly with the size of embeddings. The embeddings learned through SimplE are interpretable, and certain types of expert knowledge in terms of logical rules can be incorporated into these embeddings through weight tying. We prove SimplE is fully-expressive and derive a bound on the size of its embeddings for full expressivity. We show empirically that, despite its simplicity, SimplE outperforms several state-of-the-art tensor factorization techniques.

0
7
下载
预览

Knowledge graphs contain rich relational structures of the world, and thus complement data-driven machine learning in heterogeneous data. One of the most effective methods in representing knowledge graphs is to embed symbolic relations and entities into continuous spaces, where relations are approximately linear translation between projected images of entities in the relation space. However, state-of-the-art relation projection methods such as TransR, TransD or TransSparse do not model the correlation between relations, and thus are not scalable to complex knowledge graphs with thousands of relations, both in computational demand and in statistical robustness. To this end we introduce TransF, a novel translation-based method which mitigates the burden of relation projection by explicitly modeling the basis subspaces of projection matrices. As a result, TransF is far more light weight than the existing projection methods, and is robust when facing a high number of relations. Experimental results on the canonical link prediction task show that our proposed model outperforms competing rivals by a large margin and achieves state-of-the-art performance. Especially, TransF improves by 9%/5% in the head/tail entity prediction task for N-to-1/1-to-N relations over the best performing translation-based method.

0
4
下载
预览
小贴士
相关论文
Zhanqiu Zhang,Jianyu Cai,Yongdong Zhang,Jie Wang
15+阅读 · 2019年12月25日
HyperKG: Hyperbolic Knowledge Graph Embeddings for Knowledge Base Completion
Prodromos Kolyvakis,Alexandros Kalousis,Dimitris Kiritsis
4+阅读 · 2019年8月17日
Deepak Nathani,Jatin Chauhan,Charu Sharma,Manohar Kaul
34+阅读 · 2019年6月4日
Wen Zhang,Bibek Paudel,Wei Zhang,Abraham Bernstein,Huajun Chen
6+阅读 · 2019年3月12日
Zhiqing Sun,Zhi-Hong Deng,Jian-Yun Nie,Jian Tang
8+阅读 · 2019年2月26日
Haoyu Wang,Vivek Kulkarni,William Yang Wang
5+阅读 · 2018年10月31日
Ivana Balazevic,Carl Allen,Timothy M. Hospedales
8+阅读 · 2018年10月18日
Tommaso Soru,Stefano Ruberto,Diego Moussallem,Edgard Marx,Diego Esteves,Axel-Cyrille Ngonga Ngomo
7+阅读 · 2018年3月21日
Seyed Mehran Kazemi,David Poole
7+阅读 · 2018年2月13日
Kien Do,Truyen Tran,Svetha Venkatesh
4+阅读 · 2018年1月26日
相关资讯
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
Hierarchically Structured Meta-learning
CreateAMind
9+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
6+阅读 · 2019年5月18日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
7+阅读 · 2019年2月1日
逆强化学习-学习人先验的动机
CreateAMind
5+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
26+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
20+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
6+阅读 · 2018年2月7日
「知识表示学习」专题论文推荐 | 每周论文清单
论文浅尝 | Distant Supervision for Relation Extraction
开放知识图谱
4+阅读 · 2017年12月25日
Top