Coronavirus Disease 2019 (COVID-19) demonstrated the need for accurate and fast diagnosis methods for emergent viral diseases. Soon after the emergence of COVID-19, medical practitioners used X-ray and computed tomography (CT) images of patients' lungs to detect COVID-19. Machine learning methods are capable of improving the identification accuracy of COVID-19 in X-ray and CT images, delivering near real-time results, while alleviating the burden on medical practitioners. In this work, we demonstrate the efficacy of a support vector machine (SVM) classifier, trained with a combination of deep convolutional and handcrafted features extracted from X-ray chest scans. We use this combination of features to discriminate between healthy, common pneumonia, and COVID-19 patients. The performance of the combined feature approach is compared with a standard convolutional neural network (CNN) and the SVM trained with handcrafted features. We find that combining the features in our novel framework improves the performance of the classification task compared to the independent application of convolutional and handcrafted features. Specifically, we achieve an accuracy of 0.988 in the classification task with our combined approach compared to 0.963 and 0.983 accuracy for the handcrafted features with SVM and CNN respectively.

0
下载
关闭预览

相关内容

在机器学习中,支持向量机(SVM,也称为支持向量网络)是带有相关学习算法的监督学习模型,该算法分析用于分类和回归分析的数据。支持向量机(SVM)算法是一种流行的机器学习工具,可为分类和回归问题提供解决方案。给定一组训练示例,每个训练示例都标记为属于两个类别中的一个或另一个,则SVM训练算法会构建一个模型,该模型将新示例分配给一个类别或另一个类别,使其成为非概率二进制线性分类器(尽管方法存在诸如Platt缩放的问题,以便在概率分类设置中使用SVM)。SVM模型是将示例表示为空间中的点,并进行了映射,以使各个类别的示例被尽可能宽的明显间隙分开。然后,将新示例映射到相同的空间,并根据它们落入的间隙的侧面来预测属于一个类别。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

Detection and classification of ships based on their silhouette profiles in natural imagery is an important undertaking in computer science. This problem can be viewed from a variety of perspectives, including security, traffic control, and even militarism. Therefore, in each of the aforementioned applications, specific processing is required. In this paper, by applying the "bag of words" (BoW), a new method is presented that its words are the features that are obtained using pre-trained models of deep convolutional networks. , Three VGG models are utilized which provide superior accuracy in identifying objects. The regions of the image that are selected as the initial proposals are derived from a greedy algorithm on the key points generated by the Scale Invariant Feature Transform (SIFT) method. Using the deep features in the BOW method provides a good improvement in the recognition and classification of ships. Eventually, we obtained an accuracy of 91.8% in the classification of the ships which shows the improvement of about 5% compared to previous methods.

0
0
下载
预览

In cases of serious crime, including sexual abuse, often the only available information with demonstrated potential for identification is images of the hands. Since this evidence is captured in uncontrolled situations, it is difficult to analyse. As global approaches to feature comparison are limited in this case, it is important to extend to consider local information. In this work, we propose hand-based person identification by learning both global and local deep feature representation. Our proposed method, Global and Part-Aware Network (GPA-Net), creates global and local branches on the conv-layer for learning robust discriminative global and part-level features. For learning the local (part-level) features, we perform uniform partitioning on the conv-layer in both horizontal and vertical directions. We retrieve the parts by conducting a soft partition without explicitly partitioning the images or requiring external cues such as pose estimation. We make extensive evaluations on two large multi-ethnic and publicly available hand datasets, demonstrating that our proposed method significantly outperforms competing approaches.

0
0
下载
预览

In this worldwide spread of SARS-CoV-2 (COVID-19) infection, it is of utmost importance to detect the disease at an early stage especially in the hot spots of this epidemic. There are more than 110 Million infected cases on the globe, sofar. Due to its promptness and effective results computed tomography (CT)-scan image is preferred to the reverse-transcription polymerase chain reaction (RT-PCR). Early detection and isolation of the patient is the only possible way of controlling the spread of the disease. Automated analysis of CT-Scans can provide enormous support in this process. In this article, We propose a novel approach to detect SARS-CoV-2 using CT-scan images. Our method is based on a very intuitive and natural idea of analyzing shapes, an attempt to mimic a professional medic. We mainly trace SARS-CoV-2 features by quantifying their topological properties. We primarily use a tool called persistent homology, from Topological Data Analysis (TDA), to compute these topological properties. We train and test our model on the "SARS-CoV-2 CT-scan dataset" \citep{soares2020sars}, an open-source dataset, containing 2,481 CT-scans of normal and COVID-19 patients. Our model yielded an overall benchmark F1 score of $99.42\% $, accuracy $99.416\%$, precision $99.41\%$, and recall $99.42\%$. The TDA techniques have great potential that can be utilized for efficient and prompt detection of COVID-19. The immense potential of TDA may be exploited in clinics for rapid and safe detection of COVID-19 globally, in particular in the low and middle-income countries where RT-PCR labs and/or kits are in a serious crisis.

0
0
下载
预览

The rapid advancements in machine learning, graphics processing technologies and availability of medical imaging data has led to a rapid increase in use of machine learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, brief mathematical description of 3D CNN and the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection, and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models, in general) and possible future trends in the field.

0
7
下载
预览

The COVID-19 pandemic continues to have a devastating effect on the health and well-being of the global population. A critical step in the fight against COVID-19 is effective screening of infected patients, with one of the key screening approaches being radiological imaging using chest radiography. Motivated by this, a number of artificial intelligence (AI) systems based on deep learning have been proposed and results have been shown to be quite promising in terms of accuracy in detecting patients infected with COVID-19 using chest radiography images. However, to the best of the authors' knowledge, these developed AI systems have been closed source and unavailable to the research community for deeper understanding and extension, and unavailable for public access and use. Therefore, in this study we introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest radiography images that is open source and available to the general public. We also describe the chest radiography dataset leveraged to train COVID-Net, which we will refer to as COVIDx and is comprised of 5941 posteroanterior chest radiography images across 2839 patient cases from two open access data repositories. Furthermore, we investigate how COVID-Net makes predictions using an explainability method in an attempt to gain deeper insights into critical factors associated with COVID cases, which can aid clinicians in improved screening. By no means a production-ready solution, the hope is that the open access COVID-Net, along with the description on constructing the open source COVIDx dataset, will be leveraged and build upon by both researchers and citizen data scientists alike to accelerate the development of highly accurate yet practical deep learning solutions for detecting COVID-19 cases and accelerate treatment of those who need it the most.

0
5
下载
预览

A semantic feature extraction method for multitemporal high resolution aerial image registration is proposed in this paper. These features encode properties or information about temporally invariant objects such as roads and help deal with issues such as changing foliage in image registration, which classical handcrafted features are unable to address. These features are extracted from a semantic segmentation network and have shown good robustness and accuracy in registering aerial images across years and seasons in the experiments.

0
3
下载
预览

In multi-label text classification, each textual document can be assigned with one or more labels. Due to this nature, the multi-label text classification task is often considered to be more challenging compared to the binary or multi-class text classification problems. As an important task with broad applications in biomedicine such as assigning diagnosis codes, a number of different computational methods (e.g. training and combining binary classifiers for each label) have been proposed in recent years. However, many suffered from modest accuracy and efficiency, with only limited success in practical use. We propose ML-Net, a novel deep learning framework, for multi-label classification of biomedical texts. As an end-to-end system, ML-Net combines a label prediction network with an automated label count prediction mechanism to output an optimal set of labels by leveraging both predicted confidence score of each label and the contextual information in the target document. We evaluate ML-Net on three independent, publicly-available corpora in two kinds of text genres: biomedical literature and clinical notes. For evaluation, example-based measures such as precision, recall and f-measure are used. ML-Net is compared with several competitive machine learning baseline models. Our benchmarking results show that ML-Net compares favorably to the state-of-the-art methods in multi-label classification of biomedical texts. ML-NET is also shown to be robust when evaluated on different text genres in biomedicine. Unlike traditional machine learning methods, ML-Net does not require human efforts in feature engineering and is highly efficient and scalable approach to tasks with a large set of labels (no need to build individual classifiers for each separate label). Finally, ML-NET is able to dynamically estimate the label count based on the document context in a more systematic and accurate manner.

0
6
下载
预览

Deep neural network architectures have traditionally been designed and explored with human expertise in a long-lasting trial-and-error process. This process requires huge amount of time, expertise, and resources. To address this tedious problem, we propose a novel algorithm to optimally find hyperparameters of a deep network architecture automatically. We specifically focus on designing neural architectures for medical image segmentation task. Our proposed method is based on a policy gradient reinforcement learning for which the reward function is assigned a segmentation evaluation utility (i.e., dice index). We show the efficacy of the proposed method with its low computational cost in comparison with the state-of-the-art medical image segmentation networks. We also present a new architecture design, a densely connected encoder-decoder CNN, as a strong baseline architecture to apply the proposed hyperparameter search algorithm. We apply the proposed algorithm to each layer of the baseline architectures. As an application, we train the proposed system on cine cardiac MR images from Automated Cardiac Diagnosis Challenge (ACDC) MICCAI 2017. Starting from a baseline segmentation architecture, the resulting network architecture obtains the state-of-the-art results in accuracy without performing any trial-and-error based architecture design approaches or close supervision of the hyperparameters changes.

0
8
下载
预览

In recent years, deep learning (DL) methods have become powerful tools for biomedical image segmentation. However, high annotation efforts and costs are commonly needed to acquire sufficient biomedical training data for DL models. To alleviate the burden of manual annotation, in this paper, we propose a new weakly supervised DL approach for biomedical image segmentation using boxes only annotation. First, we develop a method to combine graph search (GS) and DL to generate fine object masks from box annotation, in which DL uses box annotation to compute a rough segmentation for GS and then GS is applied to locate the optimal object boundaries. During the mask generation process, we carefully utilize information from box annotation to filter out potential errors, and then use the generated masks to train an accurate DL segmentation network. Extensive experiments on gland segmentation in histology images, lymph node segmentation in ultrasound images, and fungus segmentation in electron microscopy images show that our approach attains superior performance over the best known state-of-the-art weakly supervised DL method and is able to achieve (1) nearly the same accuracy compared to fully supervised DL methods with far less annotation effort, (2) significantly better results with similar annotation time, and (3) robust performance in various applications.

0
4
下载
预览

One of the most common tasks in medical imaging is semantic segmentation. Achieving this segmentation automatically has been an active area of research, but the task has been proven very challenging due to the large variation of anatomy across different patients. However, recent advances in deep learning have made it possible to significantly improve the performance of image recognition and semantic segmentation methods in the field of computer vision. Due to the data driven approaches of hierarchical feature learning in deep learning frameworks, these advances can be translated to medical images without much difficulty. Several variations of deep convolutional neural networks have been successfully applied to medical images. Especially fully convolutional architectures have been proven efficient for segmentation of 3D medical images. In this article, we describe how to build a 3D fully convolutional network (FCN) that can process 3D images in order to produce automatic semantic segmentations. The model is trained and evaluated on a clinical computed tomography (CT) dataset and shows state-of-the-art performance in multi-organ segmentation.

0
5
下载
预览
小贴士
相关论文
Sadegh Soleimani Pour,Ata Jodeiri,Hossein Rashidi,Seyed Mostafa Mirhassani,Hoda Kheradfallah,Hadi Seyedarabi
0+阅读 · 2月23日
Nathanael L. Baisa,Zheheng Jiang,Ritesh Vyas,Bryan Williams,Hossein Rahmani,Plamen Angelov,Sue Black
0+阅读 · 2月21日
Sohail Iqbal,H. Fareed Ahmed,Talha Qaiser,Muhammad Imran Qureshi,Nasir Rajpoot
0+阅读 · 2月21日
3D Deep Learning on Medical Images: A Review
Satya P. Singh,Lipo Wang,Sukrit Gupta,Haveesh Goli,Parasuraman Padmanabhan,Balázs Gulyás
7+阅读 · 2020年4月1日
Multi-Temporal Aerial Image Registration Using Semantic Features
Ananya Gupta,Yao Peng,Simon Watson,Hujun Yin
3+阅读 · 2019年9月19日
ML-Net: multi-label classification of biomedical texts with deep neural networks
Jingcheng Du,Qingyu Chen,Yifan Peng,Yang Xiang,Cui Tao,Zhiyong Lu
6+阅读 · 2018年11月15日
Automatically Designing CNN Architectures for Medical Image Segmentation
Aliasghar Mortazi,Ulas Bagci
8+阅读 · 2018年7月19日
Lin Yang,Yizhe Zhang,Zhuo Zhao,Hao Zheng,Peixian Liang,Michael T. C. Ying,Anil T. Ahuja,Danny Z. Chen
4+阅读 · 2018年6月2日
Holger R. Roth,Chen Shen,Hirohisa Oda,Masahiro Oda,Yuichiro Hayashi,Kazunari Misawa,Kensaku Mori
5+阅读 · 2018年3月23日
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
10+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
6+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
20+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
26+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
15+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年3月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top