We revisit the problem of empirical risk minimziation (ERM) with differential privacy. We show that noisy AdaGrad, given appropriate knowledge and conditions on the subspace from which gradients can be drawn, achieves a regret comparable to traditional AdaGrad plus a well-controlled term due to noise. We show a convergence rate of $O(\text{Tr}(G_T)/T)$, where $G_T$ captures the geometry of the gradient subspace. Since $\text{Tr}(G_T)=O(\sqrt{T})$ we can obtain faster rates for convex and Lipschitz functions, compared to the $O(1/\sqrt{T})$ rate achieved by known versions of noisy (stochastic) gradient descent with comparable noise variance. In particular, we show that if the gradients lie in a known constant rank subspace, and assuming algorithmic access to an envelope which bounds decaying sensitivity, one can achieve faster convergence to an excess empirical risk of $\tilde O(1/\epsilon n)$, where $\epsilon$ is the privacy budget and $n$ the number of samples. Letting $p$ be the problem dimension, this result implies that, by running noisy Adagrad, we can bypass the DP-SGD bound $\tilde O(\sqrt{p}/\epsilon n)$ in $T=(\epsilon n)^{2/(1+2\alpha)}$ iterations, where $\alpha \geq 0$ is a parameter controlling gradient norm decay, instead of the rate achieved by SGD of $T=\epsilon^2n^2$. Our results operate with general convex functions in both constrained and unconstrained minimization. Along the way, we do a perturbation analysis of noisy AdaGrad of independent interest. Our utility guarantee for the private ERM problem follows as a corollary to the regret guarantee of noisy AdaGrad.


翻译:我们用不同的隐私重新审视了经验风险缩水(ERM)问题。 我们显示, 吵闹的AdaGrad( AdaGrad), 有了适当的知识和条件, 可以绘制梯度, 与传统的AdaGrad( AdaGrad) 和由于噪音而控制良好的术语相比, 取得了与传统AdaGrad( AdaGrad) 相比的遗憾。 我们显示的是美元( text{ Tr} (G_T) 的趋缩( $T$) 的趋同率, 其中, $G_T( T) 获取梯度子子空间的几何乘法。 由于 $( text{ t) 的调差差, 美元( t) (G_T) = O( O) 平面的调低( O), 以美元计价( 美元) 平价( 美元) 平价( 美元) 的调和 美元( 美元) 平价( 美元) 平价( 美元) 平价( 美元) 平面) 。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
154+阅读 · 2021年3月6日
专知会员服务
50+阅读 · 2020年12月14日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年3月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员