Nodes residing in different parts of a graph can have similar structural roles within their local network topology. The identification of such roles provides key insight into the organization of networks and can also be used to inform machine learning on graphs. However, learning structural representations of nodes is a challenging unsupervised-learning task, which typically involves manually specifying and tailoring topological features for each node. Here we develop GraphWave, a method that represents each node's local network neighborhood via a low-dimensional embedding by leveraging spectral graph wavelet diffusion patterns. We prove that nodes with similar local network neighborhoods will have similar GraphWave embeddings even though these nodes may reside in very different parts of the network. Our method scales linearly with the number of edges and does not require any hand-tailoring of topological features. We evaluate performance on both synthetic and real-world datasets, obtaining improvements of up to 71% over state-of-the-art baselines.
翻译:位于图中不同部分的节点可以在本地网络分布图中具有类似的结构角色。 识别这些角色可以提供对网络组织的关键洞察力, 也可以用于为图表上的机器学习提供信息。 但是, 学习节点的结构表述是一项具有挑战性且不受监督的学习任务, 通常涉及为每个节点手工指定和定制地形特征。 在这里, 我们开发了“ 图形Wave ”, 这是一种通过利用光谱图波盘扩散模式低维度嵌入来代表每个节点的本地网络邻居的方法。 我们证明, 类似本地网络邻居的节点将拥有相似的“ 图形干线” 嵌入器, 尽管这些节点可能位于网络的不同部分。 我们的方法与边缘数成线性比例, 不需要任何地形特征的手裁整。 我们评估合成和真实世界数据集的性能, 从而获得超过最先进的基线71%的改进。