Federated learning (FL) is vulnerable to poisoning attacks, where adversaries corrupt the global aggregation results and cause denial-of-service (DoS). Unlike recent model poisoning attacks that optimize the amplitude of malicious perturbations along certain prescribed directions to cause DoS, we propose a Flexible Model Poisoning Attack (FMPA) that can achieve versatile attack goals. We consider a practical threat scenario where no extra knowledge about the FL system (e.g., aggregation rules or updates on benign devices) is available to adversaries. FMPA exploits the global historical information to construct an estimator that predicts the next round of the global model as a benign reference. It then fine-tunes the reference model to obtain the desired poisoned model with low accuracy and small perturbations. Besides the goal of causing DoS, FMPA can be naturally extended to launch a fine-grained controllable attack, making it possible to precisely reduce the global accuracy. Armed with precise control, malicious FL service providers can gain advantages over their competitors without getting noticed, hence opening a new attack surface in FL other than DoS. Even for the purpose of DoS, experiments show that FMPA significantly decreases the global accuracy, outperforming six state-of-the-art attacks.


翻译:联邦学习(Federated Learning, FL)容易受到污染攻击,攻击者意图损坏全局聚合结果并引起拒绝服务(Denial-of-Service, DoS)。不同于最近优化恶意扰动沿着某些预设方向挑起DoS的模型污染攻击,我们提出一种灵活的模型污染攻击(Flexible Model Poisoning Attack, FMPA),能够实现多样化的攻击目标。我们考虑一种实际的威胁情景,即攻击者不具备关于FL系统的额外知识(例如聚合规则或良性设备上的更新)。FMPA利用全局历史信息构建一个估计器,预测下一轮全局模型作为良性参考。然后,它微调参考模型以获得低精度和小扰动的所需污染模型。除了引起DoS的目的外,FMPA自然地扩展到启动细粒度可控攻击,这使得精确降低全局准确度成为可能。在精确的控制下,恶意的FL服务提供者可以在不被注意的情况下获得优势,从而在FL中开辟了一个新的攻击面除DoS外。即使是为了实现DoS,实验表明,FMPA明显降低了全局准确度,优于六种最先进的攻击手段。

0
下载
关闭预览

相关内容

【ICLR2021】神经元注意力蒸馏消除DNN中的后门触发器
专知会员服务
13+阅读 · 2021年1月31日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
47+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
NeurlPS2022推荐系统论文集锦
机器学习与推荐算法
1+阅读 · 2022年9月26日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
8+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月3日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
8+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员