Bimodal palmprint recognition leverages palmprint and palm vein images simultaneously,which achieves high accuracy by multi-model information fusion and has strong anti-falsification property. In the recognition pipeline, the detection of palm and the alignment of region-of-interest (ROI) are two crucial steps for accurate matching. Most existing methods localize palm ROI by keypoint detection algorithms, however the intrinsic difficulties of keypoint detection tasks make the results unsatisfactory. Besides, the ROI alignment and fusion algorithms at image-level are not fully investigaged.To bridge the gap, in this paper, we propose Bimodal Palmprint Fusion Network (BPFNet) which focuses on ROI localization, alignment and bimodal image fusion.BPFNet is an end-to-end framework containing two subnets: The detection network directly regresses the palmprint ROIs based on bounding box prediction and conducts alignment by translation estimation.In the downstream,the bimodal fusion network implements bimodal ROI image fusion leveraging a novel proposed cross-modal selection scheme. To show the effectiveness of BPFNet,we carry out experiments on the large-scale touchless palmprint datasets CUHKSZ-v1 and TongJi and the proposed method achieves state-of-the-art performances.
翻译:双 Modal 棕榈笔印识别同时利用棕榈笔印和棕榈血管图像,通过多模型信息聚合实现高度精准,并具有很强的反假化特性。在识别管道中,检测棕榈和调合利益区域(ROI)是准确匹配的两个关键步骤。大多数现有方法通过关键点检测算法将棕榈笔印识别法本地化,但关键点检测任务的内在困难使得结果不能令人满意。此外,图像层面的ROI对齐和聚合算法没有完全投资。为了缩小差距,我们在本文件中提议双模棕榈笔拼贴网络(BPFNet),侧重于ROI本地化、校准和双模图像融合。BPFNet是一个端对端框架,包含两个子网:检测网络直接根据捆绑框预测对棕榈笔印ROI,通过翻译估计进行校准。在下游中,双调网络实施双模ROI图像融合,利用新的拟议跨模式选择方案。展示BPFARP-KNet(BPS-CS-CRMS-CRPROPS-CS-CRMS-S-PARPROPMS-S-S-S-S-S-S-S-S-S-S-S-SLOLPARV-S-S-S-S-C-S-S-S-S-S-S-S-S-S-S-TOL-S-S-S-S-S-S-S-S-T-T-T-S-SAL-C-C-C-T-S-C-T-S-S-S-S-S-S-S-C-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SPL-S-SAL-SAL-SPARPL-SL-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-