Classification models are often used to make decisions that affect humans: whether to approve a loan application, extend a job offer, or provide insurance. In such applications, individuals should have the ability to change the decision of the model. When a person is denied a loan by a credit scoring model, for example, they should be able to change the input variables of the model in a way that will guarantee approval. Otherwise, this person will be denied the loan so long as the model is deployed, and -- more importantly -- will lack agency over a decision that affects their livelihood. In this paper, we propose to audit a linear classification model in terms of recourse, which we define as the ability of a person to change the decision of the model through actionable input variables (e.g., income vs. gender, age, or marital status). We present an integer programming toolkit to: (i) measure the feasibility and difficulty of recourse in a target population; and (ii) generate a list of actionable changes for an individual to obtain a desired outcome. We demonstrate how our tools can inform practitioners, policymakers, and consumers by auditing credit scoring models built using real-world datasets. Our results illustrate how recourse can be significantly impacted by common modeling practices, and motivate the need to guarantee recourse as a policy objective for regulation in algorithmic decision-making.


翻译:通常使用分类模式来做出影响人类的决定:是批准贷款申请,提供工作机会,还是提供保险;在这种申请中,个人应有能力改变模式的决定;例如,当一个人因信用评分模式而拒绝贷款时,他们应能够改变模式的投入变量,以保证得到批准;否则,只要采用模式,此人将被拒绝贷款;更重要的是,在影响其生计的决定方面,将缺乏机构;在本文中,我们提议从追索的角度来审计线性分类模式,我们将这种模式界定为一个人通过可操作的投入变量(例如收入相对于性别、年龄或婚姻状况)改变模式决定的能力;我们提出了一个整数方案拟订工具包,以便:(一) 衡量目标人群求助的可行性和困难;以及(二) 制定个人获得理想结果的可操作性变化清单;我们展示我们的工具如何通过审计使用真实世界数据集构建的信用评分模型来告知从业人员、决策者和消费者,我们将其界定为一个人通过可操作的投入变量(例如收入相对于性别、年龄或婚姻状况)改变模式决定的能力;我们提出一个总体规划工具,以便:(一) 衡量目标人口求助的可行性和困难;以及(二) 提出个人获得预期结果。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Arxiv
7+阅读 · 2020年3月1日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
QuAC : Question Answering in Context
Arxiv
4+阅读 · 2018年8月21日
Arxiv
3+阅读 · 2017年11月12日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Top
微信扫码咨询专知VIP会员