During the past two years, Flash malware has become one of the most insidious threats to detect, with almost 600 critical vulnerabilities targeting Adobe Flash Player disclosed in the wild. Research has shown that machine learning can be successfully used to tackle this increasing variability and sophistication of Flash malware, by simply leveraging static analysis to extract information from the structure of the file or from its bytecode. However, the robustness of such systems against well-crafted evasion attempts - also known as adversarial examples - has never been investigated. In this paper, we first discuss how to craft adversarial Flash malware examples, and show that it suffices to only slightly manipulate them to evade detection. We then empirically demonstrate that popular defense techniques proposed to mitigate such threat, including re-training on adversarial examples, may not always be effective. We argue that this occurs when the feature vectors extracted from adversarial examples become indistinguishable from those of benign data, meaning that the given feature representation is intrinsically vulnerable. In this respect, we are the first to formally define and quantitatively characterize this vulnerability, highlighting when an attack can be countered by solely improving the security of the learning algorithm, or when it requires also considering additional features. We conclude the paper by suggesting alternative research directions to improve the security of learning-based Flash malware detectors.


翻译:过去两年来,闪存恶意软件已成为最隐蔽的侦测威胁之一,野外披露了近600个针对Adobe闪电玩家的关键弱点。研究显示,机器学习能够成功地用来应对闪存恶意软件日益变异和复杂的情况,只是利用静态分析,从文件结构或字节代码中提取信息。然而,这种系统对精心设计的规避尝试的强健性(也称为对抗性实例)从未进行过调查。在本文中,我们首先讨论如何编造对抗性闪存恶意软件范例,并表明只要稍微操纵它们就足以逃避探测。然后,我们从经验上表明,为减轻这种威胁而提出的大众防御技术,包括对抗性实例的再培训,可能并不总是有效。我们争辩说,当从对抗性实例中提取的特性矢量与良性数据中无法分辨时,就会出现这种情况,这意味着特定特征的表示具有内在的脆弱性。在这方面,我们首先正式界定和定量描述这种脆弱性,并表明攻击何时可以仅仅通过仅仅改进学习策略的安全性来对付这些弱点。我们还要考虑如何改进安全测算器。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员