We prove sharp dimension-free representation results for neural networks with $D$ ReLU layers under square loss for a class of functions $\mathcal{G}_D$ defined in the paper. These results capture the precise benefits of depth in the following sense: 1. The rates for representing the class of functions $\mathcal{G}_D$ via $D$ ReLU layers is sharp up to constants, as shown by matching lower bounds. 2. For each $D$, $\mathcal{G}_{D} \subseteq \mathcal{G}_{D+1}$ and as $D$ grows the class of functions $\mathcal{G}_{D}$ contains progressively less smooth functions. 3. If $D^{\prime} < D$, then the approximation rate for the class $\mathcal{G}_D$ achieved by depth $D^{\prime}$ networks is strictly worse than that achieved by depth $D$ networks. This constitutes a fine-grained characterization of the representation power of feedforward networks of arbitrary depth $D$ and number of neurons $N$, in contrast to existing representation results which either require $D$ growing quickly with $N$ or assume that the function being represented is highly smooth. In the latter case similar rates can be obtained with a single nonlinear layer. Our results confirm the prevailing hypothesis that deeper networks are better at representing less smooth functions, and indeed, the main technical novelty is to fully exploit the fact that deep networks can produce highly oscillatory functions with few activation functions.


翻译:我们证明,对于在平方损失的某类功能中,ReLU层值为$D$的神经网络来说,我们得到了清晰的无维度代表结果。对于每类功能而言,这些结果体现了精确的深度效益 $\mathcal{G ⁇ D$通过$Dcal{G ⁇ D$通过$D$ReLU 平面匹配显示的是常数。对于每类功能中损失的ReLU层值为$D$,ReLU层值为$mathcal{G ⁇ D+1},而每类功能中损失的值为$\mathcal{G{G ⁇ D}。这些结果反映了准确的深度功能类别 $mathcal{G ⁇ D$的准确度。 如果$Dprime} <D$,那么通过深度匹配的网络值为$D+D$D$的近似率,那么现在的直线线值代表着高端网络代表了高端网络值, 美元和正层值代表的直方函数的快速递增量。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月15日
Arxiv
9+阅读 · 2020年10月29日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员