Unsupervised cross-lingual pretraining has achieved strong results in neural machine translation (NMT), by drastically reducing the need for large parallel data. Most approaches adapt masked-language modeling (MLM) to sequence-to-sequence architectures, by masking parts of the input and reconstructing them in the decoder. In this work, we systematically compare masking with alternative objectives that produce inputs resembling real (full) sentences, by reordering and replacing words based on their context. We pretrain models with different methods on English$\leftrightarrow$German, English$\leftrightarrow$Nepali and English$\leftrightarrow$Sinhala monolingual data, and evaluate them on NMT. In (semi-) supervised NMT, varying the pretraining objective leads to surprisingly small differences in the finetuned performance, whereas unsupervised NMT is much more sensitive to it. To understand these results, we thoroughly study the pretrained models using a series of probes and verify that they encode and use information in different ways. We conclude that finetuning on parallel data is mostly sensitive to few properties that are shared by most models, such as a strong decoder, in contrast to unsupervised NMT that also requires models with strong cross-lingual abilities.


翻译:未经监督的跨语言预科培训在神经机器翻译方面取得了巨大成果,极大地减少了对大量平行数据的需求。大多数方法都通过掩蔽输入部分并在解码器中重建这些输入部分,将隐蔽语言模型(MLM)改造成顺序顺序结构。在这项工作中,我们系统地将遮盖与根据背景重新排序和替换词句生成类似真实(完整)句子的输入的替代目标进行比较。我们用不同方法对美元、美元和美元左曲右曲、尼泊尔元和美元左曲右曲、西奈拉单语数据进行预演模型,并在NMT上对其进行评估。在(半)监管下,预培训目标的不同导致微小的微差异,而未经监督的NMT对它更为敏感。为了理解这些结果,我们用一系列的探测器对预设模型进行了彻底研究,并核实它们以不同方式编码和使用信息。我们的结论是,对平行数据进行微调,需要最强的NMT模型与最强的模型进行交叉对比。

0
下载
关闭预览

相关内容

专知会员服务
88+阅读 · 2021年6月29日
专知会员服务
38+阅读 · 2020年9月6日
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Phrase-Based & Neural Unsupervised Machine Translation
Arxiv
3+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月26日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员