Product attribute value extraction is an important task in e-Commerce which can help several downstream applications such as product search and recommendation. Most previous models handle this task using sequence labeling or question answering method which rely on the sequential position information of values in the product text and are vulnerable to data discrepancy between training and testing. This limits their generalization ability to real-world scenario in which each product can have multiple descriptions across various shopping platforms with different composition of text and style. They also have limited zero-shot ability to new values. In this paper, we propose a multi-task learning model with value generation/classification and attribute prediction called JPAVE to predict values without the necessity of position information of values in the text. Furthermore, the copy mechanism in value generator and the value attention module in value classifier help our model address the data discrepancy issue by only focusing on the relevant part of input text and ignoring other information which causes the discrepancy issue such as sentence structure in the text. Besides, two variants of our model are designed for open-world and closed-world scenarios. In addition, copy mechanism introduced in the first variant based on value generation can improve its zero-shot ability for identifying unseen values. Experimental results on a public dataset demonstrate the superiority of our model compared with strong baselines and its generalization ability of predicting new values.
翻译:暂无翻译