众包是一种计算范式,在这种范式中,人类积极参与计算任务,特别是那些本质上人类比计算机更容易完成的任务。空间众包是移动互联网和共享经济时代众包中日益流行的一种,任务是时空的,必须在特定的地点和时间完成。事实上,空间众包激发了最近一系列的产业成功,包括城市服务的共享经济(Uber和Gigwalk)和时空数据收集(OpenStreetMap和Waze)。本调查深入探讨了空间众包的独特性带来的挑战和技术。特别地,我们确定了空间众包的四个核心算法问题: (1)任务分配,(2)质量控制,(3)激励机制设计,(4)隐私保护。我们对上述四个问题的现有研究进行了全面和系统的回顾。我们还分析了具有代表性的空间众包应用程序,并解释了它们是如何通过这四个技术问题实现的。最后,我们讨论了未来空间众包研究和应用中需要解决的开放问题。

https://link.springer.com/article/10.1007/s00778-019-00568-7

成为VIP会员查看完整内容
0
13

相关内容

当前自然语言处理的发展为低资源语言和领域提供了挑战和机遇。众所周知,深度神经网络需要大量的训练数据,而这些数据在资源贫乏的情况下可能无法得到。然而,也有越来越多的工作来提高低资源环境下的性能。基于对神经模型的基本改变和目前流行的预训练和微调范式,我们概述了低资源自然语言处理的有前途的方法。在讨论了低资源场景的定义和数据可用性的不同维度之后,我们接着研究了在训练数据稀少时支持学习的方法。这包括创建附加标签数据的机制,如数据增强和远程监督,以及转移学习设置,以减少对目标监督的需要。调查结束时,简要地看了一下在非NLP机器学习社区中建议的方法,这些方法在资源少的情况下可能对NLP有益。

https://arxiv.org/abs/2010.12309

成为VIP会员查看完整内容
0
24

人工智能(AI)为改善私人和公共生活提供了很多机会,以自动化的方式在大型数据中发现模式和结构是数据科学的核心组件,目前驱动着计算生物学、法律和金融等不同领域的应用发展。然而,这种高度积极的影响也伴随着重大的挑战:我们如何理解这些系统所建议的决策,以便我们能够信任它们?在这个报告中,我们特别关注数据驱动的方法——特别是机器学习(ML)和模式识别模型——以便调查和提取结果和文献观察。通过注意到ML模型越来越多地部署在广泛的业务中,可以特别理解本报告的目的。然而,随着方法的日益普及和复杂性,业务涉众对模型的缺陷、特定数据的偏差等越来越关注。类似地,数据科学从业者通常不知道来自学术文献的方法,或者可能很难理解不同方法之间的差异,所以最终使用行业标准,比如SHAP。在这里,我们进行了一项调查,以帮助行业从业者(以及更广泛的数据科学家)更好地理解可解释机器学习领域,并应用正确的工具。我们后面的章节将围绕一位公认的数据科学家展开叙述,并讨论她如何通过提出正确的问题来解释模型。

https://arxiv.org/abs/2009.11698

成为VIP会员查看完整内容
0
51

近年来,图神经网络(GNNs)由于具有建模和从图结构数据中学习的能力,在机器学习领域得到了迅猛发展。这种能力在数据具有内在关联的各种领域具有很强的影响,而传统的神经网络在这些领域的表现并不好。事实上,正如最近的评论可以证明的那样,GNN领域的研究已经迅速增长,并导致了各种GNN算法变体的发展,以及在化学、神经学、电子或通信网络等领域的突破性应用的探索。然而,在目前的研究阶段,GNN的有效处理仍然是一个开放的挑战。除了它们的新颖性之外,由于它们依赖于输入图,它们的密集和稀疏操作的组合,或者在某些应用中需要伸缩到巨大的图,GNN很难计算。在此背景下,本文旨在做出两大贡献。一方面,从计算的角度对GNNs领域进行了综述。这包括一个关于GNN基本原理的简短教程,在过去十年中该领域发展的概述,以及在不同GNN算法变体的多个阶段中执行的操作的总结。另一方面,对现有的软硬件加速方案进行了深入分析,总结出一种软硬件结合、图感知、以通信为中心的GNN加速方案。

成为VIP会员查看完整内容
0
95

The Elements of End-to-end Deep Face Recognition: A Survey of Recent Advances

人脸识别是计算机视觉领域中最基本、最长期存在的研究课题之一。随着深度卷积神经网络和大规模数据集的发展,深度人脸识别取得了显著的进展,并在实际应用中得到了广泛的应用。以自然图像或视频帧作为输入,端到端深度人脸识别系统输出人脸特征进行识别。为了实现这一目标,整个系统通常由三个关键要素构建:人脸检测、人脸预处理和人脸表示。人脸检测在图像或帧中定位人脸。然后,对人脸进行预处理,将人脸标定为标准视图,并将其裁剪为标准化像素大小。最后,在人脸表示阶段,从预处理后的人脸中提取识别特征进行识别。深度卷积神经网络满足了这三个要素。摘要随着深度学习技术的蓬勃发展,端到端深度人脸识别技术的能力得到了极大的提高,本文对端到端深度人脸识别技术中各个方面的最新进展进行了综述。首先,我们介绍端到端深度人脸识别的概述,如前所述,它包括人脸检测、人脸预处理和人脸表示。然后,我们分别回顾了基于深度学习的每个元素的进展,包括许多方面,如最新的算法设计、评估指标、数据集、性能比较、存在的挑战和未来的研究方向。我们希望这一调查可以为我们更好地理解端到端人脸识别的大图和更系统的探索带来有益的想法。

https://arxiv.org/abs/2009.13290

成为VIP会员查看完整内容
0
38

当前的深度学习研究以基准评价为主。如果一种方法在专门的测试集上有良好的经验表现,那么它就被认为是有利的。这种心态无缝地反映在连续学习的重现领域,在这里研究的是持续到达的基准数据集。核心挑战是如何保护之前获得的表示,以免由于迭代参数更新而出现灾难性地遗忘的情况。然而,各个方法的比较是与现实应用程序隔离的,通常通过监视累积的测试集性能来判断。封闭世界的假设仍然占主导地位。假设在部署过程中,一个模型保证会遇到来自与用于训练的相同分布的数据。这带来了一个巨大的挑战,因为众所周知,神经网络会对未知的实例提供过于自信的错误预测,并在数据损坏的情况下崩溃。在这个工作我们认为值得注意的教训来自开放数据集识别,识别的统计偏差以外的数据观测数据集,和相邻的主动学习领域,数据增量查询等预期的性能收益最大化,这些常常在深度学习的时代被忽略。基于这些遗忘的教训,我们提出了一个统一的观点,以搭建持续学习,主动学习和开放集识别在深度神经网络的桥梁。我们的结果表明,这不仅有利于每个个体范式,而且突出了在一个共同框架中的自然协同作用。我们从经验上证明了在减轻灾难性遗忘、主动学习中查询数据、选择任务顺序等方面的改进,同时在以前提出的方法失败的地方展示了强大的开放世界应用。****

成为VIP会员查看完整内容
0
38

自动驾驶一直是人工智能应用中最活跃的领域。几乎在同一时间,深度学习的几位先驱取得了突破,其中三位(也被称为深度学习之父)Hinton、Bengio和LeCun获得了2019年ACM图灵奖。这是一项关于采用深度学习方法的自动驾驶技术的综述。我们研究了自动驾驶系统的主要领域,如感知、地图和定位、预测、规划和控制、仿真、V2X和安全等。由于篇幅有限,我们将重点分析几个关键领域,即感知中的二维/三维物体检测、摄像机深度估计、数据、特征和任务级的多传感器融合、车辆行驶和行人轨迹的行为建模和预测。

https://arxiv.org/abs/2006.06091

成为VIP会员查看完整内容
1
43

最新的技术进步提高了交通运输的质量。新的数据驱动方法为所有基于控制的系统(如交通、机器人、物联网和电力系统)带来了新的研究方向。将数据驱动的应用与运输系统相结合在最近的运输应用程序中起着关键的作用。本文综述了基于深度强化学习(RL)的交通控制的最新应用。其中,详细讨论了基于深度RL的交通信号控制(TSC)的应用,这在文献中已经得到了广泛的研究。综合讨论了TSC的不同问题求解方法、RL参数和仿真环境。在文献中,也有一些基于深度RL模型的自主驾驶应用研究。我们的调查广泛地总结了这一领域的现有工作,并根据应用程序类型、控制模型和研究的算法对它们进行了分类。最后,我们讨论了基于深度可编程逻辑语言的交通应用所面临的挑战和有待解决的问题。

成为VIP会员查看完整内容
0
58

COVID-19大流行在全球蔓延,已引发迫切需要为抗击对人类人口的巨大威胁作出贡献。计算机视觉作为人工智能的一个子领域,最近在解决医疗保健中的各种复杂问题方面取得了成功,并有可能在控制COVID-19的斗争中做出贡献。为了响应这一号召,计算机视觉研究人员正在试验他们的知识库,以设计有效的方法来应对COVID-19的挑战,并为全球社会服务。新的贡献每天都在分享。它促使我们回顾最近的工作,收集有关现有研究资源的信息和对未来研究方向的指示。我们想把它提供给计算机视觉研究社区,以节省他们宝贵的时间。本调查报告旨在对计算机视觉与COVID-19大流行对抗的现有文献进行初步综述。

成为VIP会员查看完整内容
0
31

题目: A survey of deep learning techniques for autonomous driving

简介: 本文目的是研究自动驾驶中深度学习技术的最新技术。首先介绍基于AI的自动驾驶架构、CNN和RNN、以及DRL范例。这些方法为驾驶场景感知、路径规划、行为决策和运动控制算法奠定基础。该文研究深度学习方法构建的模块化“感知-规划-执行”流水线以及将传感信息直接映射到转向命令的端到端系统。此外,设计自动驾驶AI架构遇到的当前挑战,如安全性、训练数据源和计算硬件等也进行了讨论。该工作有助于深入了解深度学习和自动驾驶AI方法的优越性和局限性,并协助系统的设计选择。

成为VIP会员查看完整内容
0
32
小贴士
相关主题
相关VIP内容
专知会员服务
24+阅读 · 2020年10月27日
专知会员服务
51+阅读 · 2020年10月10日
专知会员服务
95+阅读 · 2020年10月3日
专知会员服务
38+阅读 · 2020年10月2日
最新《深度持续学习》综述论文,32页pdf
专知会员服务
38+阅读 · 2020年9月6日
专知会员服务
43+阅读 · 2020年6月14日
专知会员服务
31+阅读 · 2020年4月22日
【文献综述】边缘计算与深度学习的融合综述论文
专知会员服务
58+阅读 · 2019年12月26日
相关论文
Kristijonas Cyras,Ramamurthy Badrinath,Swarup Kumar Mohalik,Anusha Mujumdar,Alexandros Nikou,Alessandro Previti,Vaishnavi Sundararajan,Aneta Vulgarakis Feljan
10+阅读 · 2020年9月1日
Xianfeng Tang,Huaxiu Yao,Yiwei Sun,Yiqi Wang,Jiliang Tang,Charu Aggarwal,Prasenjit Mitra,Suhang Wang
6+阅读 · 2020年8月13日
Liang Chen,Jintang Li,Jiaying Peng,Tao Xie,Zengxu Cao,Kun Xu,Xiangnan He,Zibin Zheng
31+阅读 · 2020年3月10日
Signed Graph Attention Networks
Junjie Huang,Huawei Shen,Liang Hou,Xueqi Cheng
5+阅读 · 2019年9月5日
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu,Shirui Pan,Fengwen Chen,Guodong Long,Chengqi Zhang,Philip S. Yu
8+阅读 · 2019年3月10日
Multi-Task Deep Neural Networks for Natural Language Understanding
Xiaodong Liu,Pengcheng He,Weizhu Chen,Jianfeng Gao
3+阅读 · 2019年1月31日
Self-Driving Cars: A Survey
Claudine Badue,Rânik Guidolini,Raphael Vivacqua Carneiro,Pedro Azevedo,Vinicius Brito Cardoso,Avelino Forechi,Luan Ferreira Reis Jesus,Rodrigo Ferreira Berriel,Thiago Meireles Paixão,Filipe Mutz,Thiago Oliveira-Santos,Alberto Ferreira De Souza
25+阅读 · 2019年1月14日
Music Transformer
Cheng-Zhi Anna Huang,Ashish Vaswani,Jakob Uszkoreit,Noam Shazeer,Ian Simon,Curtis Hawthorne,Andrew M. Dai,Matthew D. Hoffman,Monica Dinculescu,Douglas Eck
3+阅读 · 2018年12月12日
Logan Engstrom,Andrew Ilyas,Anish Athalye
7+阅读 · 2018年7月26日
Joachim D. Curtó,Irene C. Zarza,Fernando De La Torre,Irwin King,Michael R. Lyu
7+阅读 · 2018年1月27日
Top