Reinforcement learning (RL) is a promising tool to solve robust optimal well control problems where the model parameters are highly uncertain, and the system is partially observable in practice. However, RL of robust control policies often relies on performing a large number of simulations. This could easily become computationally intractable for cases with computationally intensive simulations. To address this bottleneck, an adaptive multi-grid RL framework is introduced which is inspired by principles of geometric multi-grid methods used in iterative numerical algorithms. RL control policies are initially learned using computationally efficient low fidelity simulations using coarse grid discretization of the underlying partial differential equations (PDEs). Subsequently, the simulation fidelity is increased in an adaptive manner towards the highest fidelity simulation that correspond to finest discretization of the model domain. The proposed framework is demonstrated using a state-of-the-art, model-free policy-based RL algorithm, namely the Proximal Policy Optimisation (PPO) algorithm. Results are shown for two case studies of robust optimal well control problems which are inspired from SPE-10 model 2 benchmark case studies. Prominent gains in the computational efficiency is observed using the proposed framework saving around 60-70% of computational cost of its single fine-grid counterpart.


翻译:强化强化学习(RL)是解决强力最佳控制问题的一个很有希望的工具,模型参数极不确定,系统在实际中可部分观测到。但是,强力控制政策的RL往往依赖进行大量模拟。这很容易成为计算密集模拟案件在计算上难以处理的难题。为解决这一瓶颈问题,引入了一个适应性多格多格RL框架,这一框架的灵感来自迭代数字算法中采用的几何多格多格方法原则。RL控制政策最初是利用利用基础部分差异方程式(PDEs)粗格离散的计算效率低忠诚度模拟来学习的。随后,模拟忠诚度以适应方式提高,以达到与模型领域最佳离散相符的最高忠诚性模拟。为了解决这一瓶颈,采用了一个适应性、无模型的多格多格LL算法原则,即普罗克西米勒政策优化算法(PPPO)算法。根据SPE-10模型基准案例研究(PDE)对稳健最佳控制问题进行的两个案例研究得出了结果。随后,模拟忠于SPE-10模型基准案例研究中,在计算成本框架中观察到了对价。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
29+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
64+阅读 · 2022年4月13日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
29+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员