We study the number $N_{\mathrm{sd}}^K(\lambda)$ of self-dual cuspidal automorphic representations of $GL_N(\mathbb{A_Q})$ which are $K$-spherical with respect to a fixed compact subgroup $K$ and whose Laplacian eigenvalue is $\leq \lambda$. We prove Weak Weyl's Law for $N_{\mathrm{sd}}^K(\lambda)$ in the form that there are positive constants $c_1, c_2$ (depending on $K$) and $d$ such that $c_1\lambda^{d/2}\leq N_{\mathrm{sd}}^K(\lambda)\leq c_2\lambda^{d/2}$ for all sufficiently large $\lambda$. When $N=2n$ is even and $K$ is a maximal compact subgroup at all places, we prove Weyl's Law for the number of self-dual representations, i.e., $N_{\mathrm{sd}}^K(\lambda)=c\lambda^{d/2}+o(\lambda^{d/2})$. These results are based on considering functorial descents of self-dual representations $\Pi$ to quasisplit classical groups $\mathbf G$. In order to relate the properties of representations under functoriality, we discuss the infinitesimal character of the real component $\Pi_\infty$, which determines the Laplacian eigenvalue. To relate the existence of $K$-fixed vectors, we study the depth of $p$-adic representations, proving a weak version of depth preservation. We also consider the explicit construction of local descent, which allows us to improve the results towards depth preservation for generic representations.


翻译:我们研究的是 $@ mathrm{ sd ⁇ K( lambda) 的自定义深度代表$GL_ N( mathbb{ A ⁇ ) 美元, 相对于固定的紧凑分组 $K$, 其 Laplaceian egenvalue $\leq\\ lambda\ d/2} 美元。 我们证明 $N=2n{sd ⁇ K( limabda) 以正数常数 $1, c2美元( 取决于 $K$) 的自定义深度代表 $2美元 美元。 当美元=2n@ kdda) 以正数常数表示的自定义深度代表( yl- lab) 美元, 以正数表示自定义的深度代表 。

0
下载
关闭预览

相关内容

开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
35+阅读 · 2020年1月2日
Knowledge Distillation from Internal Representations
Arxiv
4+阅读 · 2019年10月8日
Arxiv
27+阅读 · 2018年4月12日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员