To replace data augmentation, this paper proposed a method called SLAP to intensify experience to speed up machine learning and reduce the sample size. SLAP is a model-independent protocol/function to produce the same output given different transformation variants. SLAP improved the convergence speed of convolutional neural network learning by 83% in the experiments with Gomoku game states, with only one eighth of the sample size compared with data augmentation. In reinforcement learning for Gomoku, using AlphaGo Zero/AlphaZero algorithm with data augmentation as baseline, SLAP reduced the number of training samples by a factor of 8 and achieved similar winning rate against the same evaluator, but it was not yet evident that it could speed up reinforcement learning. The benefits should at least apply to domains that are invariant to symmetry or certain transformations. As future work, SLAP may aid more explainable learning and transfer learning for domains that are not invariant to symmetry, as a small step towards artificial general intelligence.


翻译:为了取代数据增强,本文建议了一种称为SLAP的方法,以强化经验,加快机器学习,缩小样本规模。SLAP是一种模式独立的协议/功能,可以产生不同变异变异的相同产出。SLAP在与Gomoko游戏州实验中将进化神经网络学习的趋同速度提高了83%,与数据增强相比,样本规模只有八分之一。在为Gomoku强化学习时,使用以数据增强为基准的AlphaGo Zero/AlphaZero算法,SLAP将培训样本数量减少了8倍,并取得了与同一评价员类似的成功率,但尚不清楚它能够加快增强学习的速度。其好处至少应适用于不易对称或某些变异的领域。作为今后的工作,SLAPP可以帮助对非变异性一般情报领域进行更易解的学习和转移学习,作为向人工一般情报的一小步。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年11月8日
Arxiv
15+阅读 · 2022年6月14日
Arxiv
64+阅读 · 2022年4月13日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员