Deep metric learning employs deep neural networks to embed instances into a metric space such that distances between instances of the same class are small and distances between instances from different classes are large. In most existing deep metric learning techniques, the embedding of an instance is given by a feature vector produced by a deep neural network and Euclidean distance or cosine similarity defines distances between these vectors. In this paper, we study deep distributional embeddings of sequences, where the embedding of a sequence is given by the distribution of learned deep features across the sequence. This has the advantage of capturing statistical information about the distribution of patterns within the sequence in the embedding. When embeddings are distributions rather than vectors, measuring distances between embeddings involves comparing their respective distributions. We propose a distance metric based on Wasserstein distances between the distributions and a corresponding loss function for metric learning, which leads to a novel end-to-end trainable embedding model. We empirically observe that distributional embeddings outperform standard vector embeddings and that training with the proposed Wasserstein metric outperforms training with other distance functions.


翻译:深度测量学习利用深度神经网络将各种实例嵌入一个测量空间,使同一类的事例之间的距离小,不同类的事例之间的距离大。在大多数现有的深度测量学习技术中,一个实例的嵌入是由深层神经网络产生的特性矢量产生的,而Euclidean距离或相近性则界定了这些矢量之间的距离。在本文中,我们研究了序列的深度分布嵌入,序列的嵌入顺序是通过在整个序列中所学深度特征的分布所决定的。这具有获取关于嵌入序列中模式分布的统计信息的好处。当嵌入是分布而不是矢量时,测量嵌入之间的距离需要比较它们各自的分布。我们根据瓦塞斯坦分布之间的距离和相应的损失函数提出了一个远程测量尺度,从而导致一个新的端到端可训练的嵌入模型。我们从经验上看到,分布嵌入超出了标准的矢量嵌入,并且用拟议的瓦西斯坦矩阵外形外形训练与其他远程功能的培训。

0
下载
关闭预览

相关内容

度量学习的目的为了衡量样本之间的相近程度,而这也正是模式识别的核心问题之一。大量的机器学习方法,比如K近邻、支持向量机、径向基函数网络等分类方法以及K-means聚类方法,还有一些基于图的方法,其性能好坏都主要有样本之间的相似度量方法的选择决定。 度量学习通常的目标是使同类样本之间的距离尽可能缩小,不同类样本之间的距离尽可能放大。
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
76+阅读 · 2020年2月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
16+阅读 · 2018年4月2日
Arxiv
6+阅读 · 2018年3月12日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员