The goal of multi-object tracking (MOT) is detecting and tracking all the objects in a scene, while keeping a unique identifier for each object. In this paper, we present a new robust state-of-the-art tracker, which can combine the advantages of motion and appearance information, along with camera-motion compensation, and a more accurate Kalman filter state vector. Our new trackers BoT-SORT, and BoT-SORT-ReID rank first in the datasets of MOTChallenge [29, 11] on both MOT17 and MOT20 test sets, in terms of all the main MOT metrics: MOTA, IDF1, and HOTA. For MOT17: 80.5 MOTA, 80.2 IDF1, and 65.0 HOTA are achieved. The source code and the pre-trained models are available at https://github.com/NirAharon/BOT-SORT
翻译:多物体跟踪(MOT)的目标是在现场探测和跟踪所有物体,同时为每个物体保留一个独特的识别特征。在本文件中,我们展示了一个新的、最先进的最新跟踪器,它可以结合运动和外貌信息的优势,加上摄像-动作补偿,以及更精确的Kalman过滤器状态矢量。我们的新追踪器Bot-SORT和Bot-SORT-ReID在MOT17和MOT20测试组的数据集[29、11]中排名第一。根据所有主要的MOTA、UNF1和HOTA等主要计量,我们展示了一个新的最先进的跟踪器。对于MOT17:80.5MOTA、80.2IF1和65.0 HONTA实现了。源代码和预先训练的模型可在https://github.com/NirAharon/BOT-SORT上查阅。