The AlphaGo, AlphaGo Zero, and AlphaZero series of algorithms are remarkable demonstrations of deep reinforcement learning's capabilities, achieving superhuman performance in the complex game of Go with progressively increasing autonomy. However, many obstacles remain in the understanding of and usability of these promising approaches by the research community. Toward elucidating unresolved mysteries and facilitating future research, we propose ELF OpenGo, an open-source reimplementation of the AlphaZero algorithm. ELF OpenGo is the first open-source Go AI to convincingly demonstrate superhuman performance with a perfect (20:0) record against global top professionals. We apply ELF OpenGo to conduct extensive ablation studies, and to identify and analyze numerous interesting phenomena in both the model training and in the gameplay inference procedures. Our code, models, selfplay datasets, and auxiliary data are publicly available.
翻译:AlphaGo, AlphaGo Zero, AlphaGo, AlphaGo Zero系列和AlphaZero系列的算法是深度强化学习能力的显著表现,在复杂的Go游戏中取得了超人的表现,并逐渐提高了自主性。然而,在研究界对这些有希望的方法的理解和使用方面仍然存在许多障碍。为了澄清尚未解决的奥秘并促进未来的研究,我们提议ELF OpenGo,这是一个公开来源的阿尔法Zero算法的重新实施。ELF OpenGo是第一个公开来源的Go AI, 令人信服地展示超人的表现,与全球顶尖专业人员相比,超完美(20:0)的记录。我们应用ELF OpenGo 进行广泛的反动研究,并查明和分析模型培训和游戏推论程序中的许多有趣的现象。我们的代码、模型、自玩数据集和辅助数据可以公开获得。