Attributing a piece of malware to its creator typically requires threat intelligence. Binary attribution increases the level of difficulty as it mostly relies upon the ability to disassemble binaries to identify authorship style. Our survey explores malicious author style and the adversarial techniques used by them to remain anonymous. We examine the adversarial impact on the state-of-the-art methods. We identify key findings and explore the open research challenges. To mitigate the lack of ground truth datasets in this domain, we publish alongside this survey the largest and most diverse meta-information dataset of 15,660 malware labeled to 164 threat actor groups.

0
下载
关闭预览

相关内容

To address the long-standing data sparsity problem in recommender systems (RSs), cross-domain recommendation (CDR) has been proposed to leverage the relatively richer information from a richer domain to improve the recommendation performance in a sparser domain. Although CDR has been extensively studied in recent years, there is a lack of a systematic review of the existing CDR approaches. To fill this gap, in this paper, we provide a comprehensive review of existing CDR approaches, including challenges, research progress, and future directions. Specifically, we first summarize existing CDR approaches into four types, including single-target CDR, multi-domain recommendation, dual-target CDR, and multi-target CDR. We then present the definitions and challenges of these CDR approaches. Next, we propose a full-view categorization and new taxonomies on these approaches and report their research progress in detail. In the end, we share several promising research directions in CDR.

0
0
下载
预览

We explore the limitations of and best practices for using black-box variational inference to estimate posterior summaries of the model parameters. By taking an importance sampling perspective, we are able to explain and empirically demonstrate: 1) why the intuitions about the behavior of approximate families and divergences for low-dimensional posteriors fail for higher-dimensional posteriors, 2) how we can diagnose the pre-asymptotic reliability of variational inference in practice by examining the behavior of the density ratios (i.e., importance weights), 3) why the choice of variational objective is not as relevant for higher-dimensional posteriors, and 4) why, although flexible variational families can provide some benefits in higher dimensions, they also introduce additional optimization challenges. Based on these findings, for high-dimensional posteriors we recommend using the exclusive KL divergence that is most stable and easiest to optimize, and then focusing on improving the variational family or using model parameter transformations to make the posterior more similar to the approximating family. Our results also show that in low to moderate dimensions, heavy-tailed variational families and mass-covering divergences can increase the chances that the approximation can be improved by importance sampling.

0
0
下载
预览

eHealth (Health Informatics/Medical Informatics) field is growing worldwide due to acknowledge of reputable Organizations such as World Health Organization, Institute of Medicine in USA and several others. This field is facing number of challenges and there is need to classify these challenges mentioned by different researchers of this area. The purpose of this study is to classify different eHealth challenges in broader categories. We also analyzed recent eHealth Applications to identify current trends of such applications. In this paper, we identify stakeholders who are responsible to contribute in a particular eHealth challenge. Through eHealth application analysis, we categories these applications based on different factors. We identify different socio-economic benefits, which these applications can provide. We also present ecosystem of an eHealth application. We gave recommendations for eHealth challenges relevant to Information Technology domain. We conclude our discussion by specifying areas for future research and recommending researchers to work on identify which type of disease can control and manage by different eHealth applications.

0
0
下载
预览

We are recently witnessing an increased adoption of microservice architectures by the industry for achieving scalability by functional decomposition, fault-tolerance by deployment of small and independent services, and polyglot persistence by the adoption of different database technologies specific to the needs of each service. Despite the accelerating industrial adoption and the extensive research on microservices, there is a lack of thorough investigation on the state of the practice and the major challenges faced by practitioners with regard to data management. To bridge this gap, this paper presents a detailed investigation of data management in microservices. Our exploratory study is based on the following methodology: we conducted a systematic literature review of articles reporting the adoption of microservices in industry, where more than 300 articles were filtered down to 11 representative studies; we analyzed a set of 9 popular open-source microservice-based applications, selected out of more than 20 open-source projects; furthermore, to strengthen our evidence, we conducted an online survey that we then used to cross-validate the findings of the previous steps with the perceptions and experiences of over 120 practitioners and researchers. Through this process, we were able to categorize the state of practice and reveal several principled challenges that cannot be solved by software engineering practices, but rather need system-level support to alleviate the burden of practitioners. Based on the observations we also identified a series of research directions to achieve this goal. Fundamentally, novel database systems and data management tools that support isolation for microservices, which include fault isolation, performance isolation, data ownership, and independent schema evolution across microservices must be built to address the needs of this growing architectural style.

0
0
下载
预览

Mutation analysis assesses a test suite's adequacy by measuring its ability to detect small artificial faults, systematically seeded into the tested program. Mutation analysis is considered one of the strongest test-adequacy criteria. Mutation testing builds on top of mutation analysis and is a testing technique that uses mutants as test goals to create or improve a test suite. Mutation testing has long been considered intractable because the sheer number of mutants that can be created represents an insurmountable problem -- both in terms of human and computational effort. This has hindered the adoption of mutation testing as an industry standard. For example, Google has a codebase of two billion lines of code and more than 500,000,000 tests are executed on a daily basis. The traditional approach to mutation testing does not scale to such an environment. To address these challenges, this paper presents a scalable approach to mutation testing based on the following main ideas: (1) Mutation testing is done incrementally, mutating only changed code during code review, rather than the entire code base; (2) Mutants are filtered, removing mutants that are likely to be irrelevant to developers, and limiting the number of mutants per line and per code review process; (3) Mutants are selected based on the historical performance of mutation operators, further eliminating irrelevant mutants and improving mutant quality. Evaluation in a code-review-based setting with more than 24,000 developers on more than 1,000 projects shows that the proposed approach produces orders of magnitude fewer mutants and that context-based mutant filtering and selection improve mutant quality and actionability. Overall, the proposed approach represents a mutation testing framework that seamlessly integrates into the software development workflow and is applicable up to large-scale industrial settings.

0
0
下载
预览

As facial interaction systems are prevalently deployed, security and reliability of these systems become a critical issue, with substantial research efforts devoted. Among them, face anti-spoofing emerges as an important area, whose objective is to identify whether a presented face is live or spoof. Recently, a large-scale face anti-spoofing dataset, CelebA-Spoof which comprised of 625,537 pictures of 10,177 subjects has been released. It is the largest face anti-spoofing dataset in terms of the numbers of the data and the subjects. This paper reports methods and results in the CelebA-Spoof Challenge 2020 on Face AntiSpoofing which employs the CelebA-Spoof dataset. The model evaluation is conducted online on the hidden test set. A total of 134 participants registered for the competition, and 19 teams made valid submissions. We will analyze the top ranked solutions and present some discussion on future work directions.

0
0
下载
预览

Fashion is the way we present ourselves to the world and has become one of the world's largest industries. Fashion, mainly conveyed by vision, has thus attracted much attention from computer vision researchers in recent years. Given the rapid development, this paper provides a comprehensive survey of more than 200 major fashion-related works covering four main aspects for enabling intelligent fashion: (1) Fashion detection includes landmark detection, fashion parsing, and item retrieval, (2) Fashion analysis contains attribute recognition, style learning, and popularity prediction, (3) Fashion synthesis involves style transfer, pose transformation, and physical simulation, and (4) Fashion recommendation comprises fashion compatibility, outfit matching, and hairstyle suggestion. For each task, the benchmark datasets and the evaluation protocols are summarized. Furthermore, we highlight promising directions for future research.

0
4
下载
预览

There is a growing body of work that proposes methods for mitigating bias in machine learning systems. These methods typically rely on access to protected attributes such as race, gender, or age. However, this raises two significant challenges: (1) protected attributes may not be available or it may not be legal to use them, and (2) it is often desirable to simultaneously consider multiple protected attributes, as well as their intersections. In the context of mitigating bias in occupation classification, we propose a method for discouraging correlation between the predicted probability of an individual's true occupation and a word embedding of their name. This method leverages the societal biases that are encoded in word embeddings, eliminating the need for access to protected attributes. Crucially, it only requires access to individuals' names at training time and not at deployment time. We evaluate two variations of our proposed method using a large-scale dataset of online biographies. We find that both variations simultaneously reduce race and gender biases, with almost no reduction in the classifier's overall true positive rate.

0
3
下载
预览

The question addressed in this paper is: If we present to a user an AI system that explains how it works, how do we know whether the explanation works and the user has achieved a pragmatic understanding of the AI? In other words, how do we know that an explanainable AI system (XAI) is any good? Our focus is on the key concepts of measurement. We discuss specific methods for evaluating: (1) the goodness of explanations, (2) whether users are satisfied by explanations, (3) how well users understand the AI systems, (4) how curiosity motivates the search for explanations, (5) whether the user's trust and reliance on the AI are appropriate, and finally, (6) how the human-XAI work system performs. The recommendations we present derive from our integration of extensive research literatures and our own psychometric evaluations.

0
3
下载
预览

Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.

0
7
下载
预览
小贴士
相关主题
相关论文
Feng Zhu,Yan Wang,Chaochao Chen,Jun Zhou,Longfei Li,Guanfeng Liu
0+阅读 · 3月2日
Akash Kumar Dhaka,Alejandro Catalina,Manushi Welandawe,Michael Riis Andersen,Jonathan Huggins,Aki Vehtari
0+阅读 · 3月1日
Muhammad Mudassar Qureshi,Amjad Farooq,Muhammad Mazhar Qureshi
0+阅读 · 2月28日
Rodrigo Laigner,Yongluan Zhou,Marcos Antonio Vaz Salles,Yijian Liu,Marcos Kalinowski
0+阅读 · 2月27日
Goran Petrović,Marko Ivanković,Gordon Fraser,René Just
0+阅读 · 2月26日
Yuanhan Zhang,Zhenfei Yin,Jing Shao,Ziwei Liu,Shuo Yang,Yuanjun Xiong,Wei Xia,Yan Xu,Man Luo,Jian Liu,Jianshu Li,Zhijun Chen,Mingyu Guo,Hui Li,Junfu Liu,Pengfei Gao,Tianqi Hong,Hao Han,Shijie Liu,Xinhua Chen,Di Qiu,Cheng Zhen,Dashuang Liang,Yufeng Jin,Zhanlong Hao
0+阅读 · 2月26日
Fashion Meets Computer Vision: A Survey
Wen-Huang Cheng,Sijie Song,Chieh-Yun Chen,Shintami Chusnul Hidayati,Jiaying Liu
4+阅读 · 2020年3月31日
Alexey Romanov,Maria De-Arteaga,Hanna Wallach,Jennifer Chayes,Christian Borgs,Alexandra Chouldechova,Sahin Geyik,Krishnaram Kenthapadi,Anna Rumshisky,Adam Tauman Kalai
3+阅读 · 2019年4月10日
Metrics for Explainable AI: Challenges and Prospects
Robert R. Hoffman,Shane T. Mueller,Gary Klein,Jordan Litman
3+阅读 · 2018年12月11日
Markus Schedl,Hamed Zamani,Ching-Wei Chen,Yashar Deldjoo,Mehdi Elahi
7+阅读 · 2018年3月21日
相关VIP内容
专知会员服务
15+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
43+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
20+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
45+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
29+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
37+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
11+阅读 · 2019年10月9日
相关资讯
超全的人脸识别数据集汇总,附打包下载
极市平台
39+阅读 · 2020年3月7日
已删除
将门创投
4+阅读 · 2019年5月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
7+阅读 · 2018年12月10日
Top