A matching in a bipartite graph $G:=(X + Y,E)$ is said to be envy-free if no unmatched vertex in $X$ is adjacent to a mathced vertex in $Y$. Every perfect matching is envy-free, but envy-free matchings may exist even when perfect matchings do not. We provide a polynomial-time algorithm for finding an envy-free matching of maximum cardinality. For edge-weighted bipartite graphs, we provide a polynomial-time algorithm for finding a maximum-cardinality envy-free matching of minimum weight. We show how envy-free matchings can be used in various fair division problems with either continuous resources ("cakes") or discrete ones. In particular, we show a symmetric algorithm for proportional cake-cutting, an algorithm for $1$-out-of-$(2n-2)$ maximin-share allocation of discrete goods, and an algorithm for $1$-out-of-$\lfloor 2n/3\rfloor$ maximin-share allocation of discrete bads (chores) among $n$ agents.
翻译:双部分图形$G = (X + Y, E) 中的匹配 : = (X + Y, E), 如果美元中没有不匹配的顶点与美元中数学顶点相邻, 可以说是无嫉妒的。 每个完美的匹配都是无嫉妒的, 但即使不完美匹配, 也可能存在无嫉妒的匹配 。 我们为找到最大最大干点的无嫉妒匹配提供了多元的算法。 对于边加权双部分图形, 我们提供一种多元数字时算法, 以找到最小重量的最高心性无嫉妒匹配值。 我们用连续资源( “ 蛋糕 ” ) 或离散资源来显示如何在各种公平划分问题上使用无嫉妒匹配 。 特别是, 我们展示了比例切蛋糕的对称算法、 美元外最大值( 2n-2) 美元对离散货物的最大分配算法, 以及 美元对底值( 2n/3\\\ share) 美元对离心代理商的最大分配算法 。