A robust 3D object tracker which continuously tracks surrounding objects and estimates their trajectories is key for self-driving vehicles. Most existing tracking methods employ a tracking-by-detection strategy, which usually requires complex pair-wise similarity computation and neglects the nature of continuous object motion. In this paper, we propose to directly learn 3D object correspondences from temporal point cloud data and infer the motion information from correspondence patterns. We modify the standard 3D object detector to process two lidar frames at the same time and predict bounding box pairs for the association and motion estimation tasks. We also equip our pipeline with a simple yet effective velocity smoothing module to estimate consistent object motion. Benifiting from the learned correspondences and motion refinement, our method exceeds the existing 3D tracking methods on both the KITTI and larger scale Nuscenes dataset.
翻译:持续跟踪物体并估计其轨迹的3D物体追踪器是自行驾驶车辆的关键。大多数现有跟踪方法都采用跟踪跟踪跟踪检测策略,通常需要复杂的双向相似计算,忽视连续物体运动的性质。在本文中,我们提议从时间点云数据中直接学习3D物体通信,并从通信模式中推断运动信息。我们修改标准 3D物体探测器,以便同时处理两个里达框架,并预测关联和运动估计任务的捆绑盒。我们还为我们的管道配备了一个简单而有效的速度平滑模块,以估计一致物体运动。根据所学的通信和运动改进,我们的方法超过了现有的KITTI和更大的Nuscenes数据集的3D跟踪方法。