The Bayesian decision-theoretic approach to design of experiments involves specifying a design (values of all controllable variables) to maximise the expected utility function (expectation with respect to the distribution of responses and parameters). For most common utility functions, the expected utility is rarely available in closed form and requires a computationally expensive approximation which then needs to be maximised over the space of all possible designs. This hinders practical use of the Bayesian approach to find experimental designs. However, recently, a new utility called Fisher information gain has been proposed. The resulting expected Fisher information gain reduces to the prior expectation of the trace of the Fisher information matrix. Since the Fisher information is often available in closed form, this significantly simplifies approximation and subsequent identification of optimal designs. In this paper, it is shown that for exponential family models, maximising the expected Fisher information gain is equivalent to maximising an alternative function over a reduced-dimension space, simplifying even further the identification of optimal designs. However, if this function does not have enough maxima, then all designs that maximise the expected Fisher information gain are under-supported, i.e. have less support points than unknown parameters, leading to parameter redundancy.


翻译:贝叶西亚决定理论设计实验的方法涉及具体规定一种设计(所有可控变量的价值),以尽量扩大预期的效用功能(预测反应和参数的分布)。对于大多数常见的效用功能来说,预期的效用很少以封闭的形式提供,需要一种成本昂贵的近似法,而这种近似法则则需要在所有可能的设计空间上最大化。这妨碍了贝叶西亚方法的实际应用,以寻找实验设计。然而,最近提出了一个新的效用,称为渔业信息增益。因此,预期的渔业信息增益将减少到对渔业信息矩阵的追踪的预期值。由于渔业信息往往以封闭的形式提供,因此这种资料大大简化了近似和随后确定最佳设计。在本文中显示,对于指数式家庭模型而言,将预期的渔业信息增益最大化相当于在缩小的分散空间上最大程度的替代功能,甚至进一步简化了最佳设计。但是,如果这一功能没有足够大的范围,那么所有使预期的渔业信息增益最大化的设计都得不到充分的支持,也就是说,比未知的参数要低支持。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
17+阅读 · 2020年9月6日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
17+阅读 · 2020年9月6日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员