Learning from synthetic data is popular in avariety of robotic vision tasks such as object detection, becauselarge amount of data can be generated without annotationsby humans. However, when relying only on synthetic data,we encounter the well-known problem of the simulation-to-reality (Sim-to-Real) gap, which is hard to resolve completelyin practice. For such cases, real human-annotated data isnecessary to bridge this gap, and in our work we focus on howto acquire this data efficiently. Therefore, we propose a Sim-to-Real pipeline that relies on deep Bayesian active learningand aims to minimize the manual annotation efforts. We devisea learning paradigm that autonomously selects the data thatis considered useful for the human expert to annotate. Toachieve this, a Bayesian Neural Network (BNN) object detectorproviding reliable uncertain estimates is adapted to infer theinformativeness of the unlabeled data, in order to performactive learning. In our experiments on two object detectiondata sets, we show that the labeling effort required to bridge thereality gap can be reduced to a small amount. Furthermore, wedemonstrate the practical effectiveness of this idea in a graspingtask on an assistive robot.
翻译:从合成数据中学习知识在物体探测等机器人视觉任务中是流行的,因为大量数据可以不由人类说明而生成。然而,在仅仅依靠合成数据时,我们遇到了众所周知的模拟到现实(Sim-Real)差距问题,这个问题很难完全解决。对于这种情况,真正的人类附加说明数据是必要的,以弥补这一差距,在我们的工作重点是如何有效获取这些数据。因此,我们提议建立一个Sim-Real管道,依靠深巴伊西亚的积极学习和目的,以尽量减少人工说明工作。我们设计了一个学习模式,自主选择被认为对人类专家有用的数据进行说明。托奇维夫,一个提供可靠不确定估计数的巴伊萨神经网络(BNNN)物体探测器进行了调整,以推断无标签数据的信息规范性,以便进行积极的学习。在两套对象探测数据集的实验中,我们显示,弥合真实性差距所需的标签努力可以降低到一个小的机器人。此外,我们把这一想法的标志化努力缩小到一个实际的高度。